【題目】解方程:
(1)=﹣1
(2)10x+7=14x﹣5﹣3x
【答案】(1);(2)x=12.
【解析】
解一元一次方程的一般步驟:去分母、去括號、移項、合并同類項、系數(shù)化為1,據(jù)此逐個方程求解.注意:去分母時,方程兩端同乘各分母的最小公倍數(shù)時,不要漏乘沒有分母的項,同時要把分子(如果是一個多項式)作為一個整體加上括號.括號前若有負號,去括號時都要變號.
(1)去分母得:4(2x-1)-2(10x-1)=3(2x+1)-12,
去括號得:8x-4-20x+2=6x+3-12,
移項、合并同類項得:-18x=-7,
把系數(shù)化為1得:x=
(2)移項,可得:10x-14x+3x=-7-5,
合并同類項,可得:-x=-12,
解得:x=12.
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)軸上,圖中點A表示-36,點B表示44,動點P、Q分別從A、B兩點同時出發(fā),相向而行,動點P、Q的運動速度比之是3∶2(速度單位:1個單位長度/秒).12秒后,動點P到達原點O,動點Q到達點C,設運動的時間為t(t>0)秒.
(1)求OC的長;
(2)經過t秒鐘,P、Q兩點之間相距5個單位長度,求t的值;
(3)若動點P到達B點后,以原速度立即返回,當P點運動至原點時,動點Q是否到達A點,若到達,求提前到達了多少時間,若未能到達,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知直線與x、y軸交于B、C兩點,A(0,0),在△ABC內依次作等邊三角形,使一邊在x軸上,另一個頂點在BC邊上,作出的等邊三角形分別是第1個△AA1B1,第2個△B1A2B2,第3個△B2A3B3,…則第n個等邊三角形的邊長等于( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,半徑均為整數(shù)的同心圓組成的“圓環(huán)帶”,若大圓的弦AB與小圓相切于點P,且弦AB的長度為定值 , 則滿足條件的不全等的“圓環(huán)帶”有( 。
A.1個
B.2個
C.3個
D.無數(shù)個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度數(shù).
(2)上題中若∠B=40°,∠C=80°改為∠C>∠B,其他條件不變,請你求出∠EAD與∠B、∠C之間的數(shù)列關系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠ABC=∠DCB,添加一個條件使△ABC≌△DCB,下列添加的條件不能使△ABC≌△DCB的是( 。
A. ∠A=∠D B. AB=DC C. AC=DB D. OB=OC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠B=90°,O是AB上的一點,以O為圓心,OB為半徑的圓與AB交于點E,與AC切于點D.若AD=2 , 且AB、AE的長是關于x的方程x2﹣8x+k=0的兩個實數(shù)根.
(1)求⊙O的半徑.
(2)求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,將長方形紙片的一角作折疊,使頂點A落在A′處,EF為折痕,若EA′恰好平分∠FEB,求∠FEB的度數(shù).
(2)如圖,A地和B地都是海上觀測站,從A地發(fā)現(xiàn)它的北偏東60方向有一艘船P,同時,從B地發(fā)現(xiàn)這艘船P在它北偏東30方向.試在圖中畫出這艘船P的位置.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com