【題目】如圖所示,D,E,F(xiàn)分別是ABC的邊BC,CA,AB上的點(diǎn),且DEAB,DFCA,要使四邊形AFDE是菱形,則要增加的條件是________.(只寫出符合要求的一個(gè)即可)

【答案】點(diǎn)D在∠BAC的平分線上(或AE=AF)

【解析】

首先根據(jù)題意畫出圖形,然后由DEACDFAB,判定四邊形DEAF為平行四邊形,再由菱形的判定定理求解即可求得答案.

添加點(diǎn)D在∠BAC的平分線上(或AE=AF).

如圖,連接AD.

DFACDEAB,

∴四邊形AFDE為平行四邊形.

①當(dāng)添加點(diǎn)D在∠BAC的平分線上時(shí).

AD平分∠BAC,DEAB

∴∠BAD=CAD,BAD=ADE,

∴∠CAD=ADE,

AE=DE,

四邊形AFDE為平行四邊形,

∴四邊形AFDE為菱形;

②當(dāng)添加AE=AF時(shí).

四邊形AFDE為平行四邊形,AE=AF

四邊形AFDE為菱形.

故答案為:點(diǎn)D在∠BAC的平分線上(或AE=AF).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中給定以下五個(gè)點(diǎn)A(-2,0),B(1,0),C(4,0),D,E(0,-6),從這五個(gè)點(diǎn)中選取三點(diǎn),使經(jīng)過(guò)三點(diǎn)的拋物線滿足以y軸的平行線為對(duì)稱軸.我們約定經(jīng)過(guò)A,B,E三點(diǎn)的拋物線表示為拋物線ABE.

(1)符合條件的拋物線共有多少條?不求解析式,請(qǐng)用約定的方法一一表示出來(lái).

(2)在五個(gè)形狀、顏色、質(zhì)量完全相同的乒乓球上標(biāo)上A,B,C,D,E代表以上五個(gè)點(diǎn),玩摸球游戲,每次摸三個(gè)球.請(qǐng)問(wèn):摸一次,三球代表的點(diǎn)恰好能確定一條符合條件的拋物線的概率是多少?

(3)小強(qiáng)、小亮用上面的五球玩游戲,若符合要求的拋物線開口向上,小強(qiáng)可以得1;若拋物線開口向下,小亮得5,你認(rèn)為這個(gè)游戲誰(shuí)獲勝的可能性大一些?說(shuō)說(shuō)你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在上學(xué)的路上(假定從家到校只有這一條路)發(fā)現(xiàn)忘帶眼鏡,立刻停下,往家里打電話,媽媽接到電話后立刻帶上眼鏡趕往學(xué)校.同時(shí),小明原路返回,兩人相遇后小明立即趕往學(xué)校,媽媽回家,媽媽要15分鐘到家,小明再經(jīng)過(guò)3分鐘到校.小明始終以100米/分的速度步行,小明和媽媽之間的距離y(米)與小明打完電話后的步行時(shí)間t(分)之間函數(shù)圖象如圖所示,則下列結(jié)論:①打電話時(shí),小明與媽媽的距離為1250米;②打完電話后,經(jīng)過(guò)23分鐘小明到達(dá)學(xué)校;③小明與媽媽相遇后,媽媽回家的速度為150米/分;④小明家與學(xué)校的距離為2550米.其中正確的有 .(把正確的序號(hào)都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是小明設(shè)計(jì)的“分別以兩條已知線段為腰和底邊上的高作等腰三角形”的尺規(guī)作圖過(guò)程.

已知:線段 a b

求作:等腰△ABC,使線段 a 為腰,線段 b 為底邊 BC 上的高. 作法:如圖,

①畫直線 l,作直線 ml,垂足為 P;

②以點(diǎn) P 為圓心,線段 b 的長(zhǎng)為半徑畫弧,交直線 m 于點(diǎn) A

③以點(diǎn) A 為圓心,線段 a 的長(zhǎng)為半徑畫弧,交直線 l B,C 兩點(diǎn);

④分別連接 AB, AC

所以△ABC 就是所求作的等腰三角形. 根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過(guò)程,

1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

2)完成下面的證明.

證明:∵ =

∴△ABC 為等腰三角形( )(填推理的依據(jù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系 xOy 中,點(diǎn)A,B的坐標(biāo)分別為(-20),(10).同時(shí)將點(diǎn)A ,B先向左平移1個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度,得到點(diǎn)AB的對(duì)應(yīng)點(diǎn)依次為C,D,連接CDAC, BD

1)寫出點(diǎn)C , D 的坐標(biāo);

2)在 y 軸上是否存在點(diǎn)E,連接EA ,EB,使SEAB=S四邊形ABDC?若存在,求出點(diǎn)E的坐標(biāo);若不存在,說(shuō)明理由;

3)點(diǎn) P 是線段 AC 上的一個(gè)動(dòng)點(diǎn),連接 BP , DP ,當(dāng)點(diǎn) P 在線段 AC 上移動(dòng)時(shí)(不與 A , C 重合),直接寫出CDP ABP BPD 之間的等量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰△ABC中,ABAC,點(diǎn)DAC上一動(dòng)點(diǎn),點(diǎn)EBD的延長(zhǎng)線上,且ABAE,AF平分∠CAEDEF

1)如圖1,連CF,求證:∠ABE=∠ACF;

2)如圖2,當(dāng)∠ABC60°時(shí),求證:AF+EFFB;

3)如圖3,當(dāng)∠ABC45°時(shí),若BD平分∠ABC,求證:BD2EF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABCD為平行四邊形紙片,要想用它剪成一個(gè)菱形,小剛說(shuō)只要過(guò)BD中點(diǎn)作BD的垂線交AD、BCE、F,沿BE、DF剪去兩個(gè)角,所得的四邊形BFDE為菱形.你認(rèn)為小剛的方法對(duì)嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線m0與x軸交于A、B兩點(diǎn).

(1)求證:拋物線的對(duì)稱軸在y軸的左側(cè);

(2)若(O為坐標(biāo)原點(diǎn)),求拋物線的解析式;

(3)設(shè)拋物線與y軸交于點(diǎn)C,若ABC是直角三角形.求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸分別交于點(diǎn)A、B,與y軸交于點(diǎn)C,且OA=1,OB=3,頂點(diǎn)為D,對(duì)稱軸交x軸于點(diǎn)Q.

(1)求拋物線對(duì)應(yīng)的二次函數(shù)的表達(dá)式;

(2)點(diǎn)P是拋物線的對(duì)稱軸上一點(diǎn),以點(diǎn)P為圓心的圓經(jīng)過(guò)A、B兩點(diǎn),且與直線CD相切,求點(diǎn)P的坐標(biāo);

(3)在拋物線的對(duì)稱軸上是否存在一點(diǎn)M,使得△DCM∽△BQC?如果存在,求出點(diǎn)M的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案