【題目】在一個不透明的布袋里裝有3個標(biāo)有數(shù)字1,2,4的小球,它們除數(shù)字不同外形狀大小完全相同.小昆從布袋里隨機取出一個小球,記下數(shù)字為x,然后放回布袋攪勻,再從布袋中隨機取出一個小球,記下數(shù)字為y,這樣確定了點M的坐標(biāo)(x,y);
(1)用列表或畫樹狀圖的方法(只選其中一種),表示出點M所有可能的坐標(biāo);
(2)求點M(x,y)在函數(shù)y=的圖象上的概率.
【答案】(1)見祥解;(2).
【解析】
(1)根據(jù)題意可以畫出相應(yīng)的樹狀圖,再寫出坐標(biāo)即可;
(2)根據(jù)(1)中的結(jié)果可以求得點M(x,y)在函數(shù)的圖象上的概率..
解:(1)由題意可得,樹狀圖如下圖所示,
共有9種結(jié)果,且每種結(jié)果發(fā)生的可能性相同,(1,1)、(1,2)、(1,4)、(2,1)、(2,2)、(2,4)、(4,1)、(4,2)、 (4,4);
(2)∵點M(x,y)在函數(shù)的圖象上有3種情況,分別為(1,4),(4,1),(2,2),
∴P(點M在的圖象上 )= ,
即點M(x,y)在函數(shù)的圖象上的概率是.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校開展課外體育活動,決定開展:籃球、乒乓球、踢毽子、跑步四種活動項目.為了解學(xué)生最喜歡哪一種活動項目(每人只選取一種).隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪成如下統(tǒng)計圖,請你結(jié)合圖中信息解答下列問題.
(1)樣本中最喜歡籃球項目的人數(shù)所占的百分比為 ,其所在扇形統(tǒng)計圖中對應(yīng)的圓心角度數(shù)是 度;
(2)請把條形統(tǒng)計圖補充完整;
(3)若該校有學(xué)生1000人,請根據(jù)樣本估計全校最喜歡踢毽子的學(xué)生人數(shù)約是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,AB是⊙O的直徑,點P在AB的延長線上,弦CE交AB于點,連結(jié)OE,AC,且∠P=∠E,∠POE=2∠CAB.
(1)求證:CE⊥AB;
(2)求證:PC是⊙O的切線;
(3)若BD=2OD,且PB=9,求⊙O的半徑長和tan∠P的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為的正方形ABCD中,點E是BC邊上一點,點F是CD邊上一點,且BF⊥AE于點G,將△ABE繞頂點A逆時針旋轉(zhuǎn)得△AB/E/,使得點B/、E/恰好分別落在AE、CD上,AE/交BF于點H,則四邊形B/E/HG的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y2與x軸相交于A、B兩點(點A在點B的右側(cè)),與y軸相交于點C,對稱軸與x軸相交于點H,與AC相交于點T.
(1)點P是線段AC上方拋物線上一點,過點P作PQ∥AC交拋物線的對稱軸于點Q,當(dāng)△AQH面積最大時,點M、N在y軸上(點M在點N的上方),MN,點G在直線AC上,求PM+NGGA的最小值.
(2)點E為BC中點,EF⊥x軸于F,連接EH,將△EFH沿EH翻折得△EF'H,如圖所示2,再將△EF'H沿直線BC平移,記平移中的△EF'H為△E'F″H',在平移過程中,直線E'H'與x軸交于點R,則是否存在這樣的點R,使得△RF'H'為等腰三角形?若存在,求出R點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)中,點A(1,2),將AO繞點A逆時針旋轉(zhuǎn)90°,點O的對應(yīng)點B恰好落在雙曲線y=(x>0)上,則k的值為( )
A. 2 B. 3 C. 4 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與x軸、y軸分別交于A,B兩點,C是OB的中點,D是AB上一點,四邊形OEDC是菱形,則△OAE的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線交x軸于,兩點,與y軸交于點C,AC,BC.M為線段OB上的一個動點,過點M作軸,交拋物線于點P,交BC于點Q.
(1)求拋物線的表達式;
(2)過點P作,垂足為點N.設(shè)M點的坐標(biāo)為,請用含m的代數(shù)式表示線段PN的長,并求出當(dāng)m為何值時PN有最大值,最大值是多少?
(3)試探究點M在運動過程中,是否存在這樣的點Q,使得以A,C,Q為頂點的三角形是等腰三角形.若存在,請求出此時點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com