【題目】如圖,平面直角坐標(biāo)中,點(diǎn)A(1,2),將AO繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)O的對應(yīng)點(diǎn)B恰好落在雙曲線y=(x>0)上,則k的值為( )
A. 2 B. 3 C. 4 D. 6
【答案】B
【解析】
作AC⊥y軸于C,ADx軸,BD⊥y軸,它們相交于D,有A點(diǎn)坐標(biāo)得到AC=1,OC=2,由于AO繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)O的對應(yīng)B點(diǎn),所以相當(dāng)是把△AOC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ABD,根據(jù)旋轉(zhuǎn)的性質(zhì)得AD=AC=1,BD=OC=2,原式可得到B點(diǎn)坐標(biāo)為(3,1),然后根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征計(jì)算k的值.
作AC⊥y軸于C,AD⊥x軸,BD⊥y軸,它們相交于D,如圖,∵A點(diǎn)坐標(biāo)為(1,2),∴AC=1,OC=2.
∵AO繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)O的對應(yīng)B點(diǎn),即把△AOC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ABD,∴AD=AC=1,BD=OC=2,∴B點(diǎn)坐標(biāo)為(3,1),∴k=3×1=3.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1:y=﹣x+m與x軸交于點(diǎn)A,直線l2:y=2x+n與y軸交于點(diǎn)B,與直線l1交于點(diǎn)P(2,2),則△PAB的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,直線y=2x+2與x軸,y軸分別交于A,B兩點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)M(a,4).
(1)求反比例函數(shù)y=(x>0)的表達(dá)式;
(2)若點(diǎn)C在反比例函數(shù)y=(x>0)的圖象上,點(diǎn)D在x軸上,當(dāng)四邊形ABCD是平行四邊形時(shí),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ACB中,∠ACB=90°,∠ABC的平分線BE和∠BAC的外角平分線AD相交于點(diǎn)P,分別交AC和BC的延長線于E,D.過P作PF⊥AD交AC的延長線于點(diǎn)H,交BC的延長線于點(diǎn)F,連接AF交DH于點(diǎn)G.則下列結(jié)論:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正確的是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,∠A=30°,BC=6.
(1)實(shí)踐操作:尺規(guī)作圖,不寫作法,保留作圖痕跡.
①作∠ABC的角平分線交AC于點(diǎn)D.
②作線段BD的垂直平分線,交AB于點(diǎn)E,交BC于點(diǎn)F,連接DE、DF.
(2)推理計(jì)算:四邊形BFDE的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=45°,AD,BE分別為BC,AC邊上的高,連接DE,過點(diǎn)D作DF⊥DE交BE于點(diǎn)F,G為BE中點(diǎn),連接AF,DG.
(1)如圖1,若點(diǎn)F與點(diǎn)G重合,求證:AF⊥DF;
(2)如圖2,請寫出AF與DG之間的關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點(diǎn)D,PE⊥OB于點(diǎn)E.如果點(diǎn)M是OP的中點(diǎn),則DM的長是( 。
A. 2 B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚(yáng)泰山文化,我市某校舉辦了“泰山詩文大賽”活動(dòng),小學(xué)、初中部根據(jù)初賽成績,各選出5名選手組成小學(xué)代表隊(duì)和初中代表隊(duì)參加學(xué)校決賽。兩個(gè)隊(duì)各選出的5名選手的決賽成績(滿分為100分)如下圖所示.
(1)根據(jù)圖示填寫圖表;
(3)計(jì)算兩隊(duì)決賽成績的方差并判斷哪一個(gè)代表隊(duì)選手成績較為穩(wěn)定.
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
小學(xué)部 | 85 | ||
初中部 | 85 | 100 |
(2)結(jié)合兩隊(duì)成績的平均數(shù)和中位數(shù),分析哪個(gè)隊(duì)的決賽成績較好;
(3)計(jì)算兩隊(duì)決賽成績的方差并判斷哪一個(gè)代表隊(duì)選手成績較為穩(wěn)定.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com