【題目】如圖,在△ABC中,∠ABC=45°,AD,BE分別為BC,AC邊上的高,連接DE,過點(diǎn)D作DF⊥DE交BE于點(diǎn)F,G為BE中點(diǎn),連接AF,DG.
(1)如圖1,若點(diǎn)F與點(diǎn)G重合,求證:AF⊥DF;
(2)如圖2,請寫出AF與DG之間的關(guān)系并證明.
【答案】(1)詳見解析;(2)AF=2DG,且AF⊥DG,理由詳見解析.
【解析】
(1)設(shè)BE交AD于點(diǎn)H,證出△ABD是等腰直角三角形,得出AD=BD,證明△DAE≌△DBF(ASA),得出BF=AE,DF=DE,證出△FDE是等腰直角三角形,得出∠DFE=45°,再證明△AEF是等腰直角三角形,得出∠AFE=45°,即可得出結(jié)論;
(2)延長DG至M,使GM=DG,交AF于H,連接BM,證明△BGM≌△EGD(SAS),得出∠MBE=∠FED=45°=∠EFD,BM=DE=DF,由(1)知:∠DAC=∠DBE,再證明△BDM≌△DAF(SAS),得出DM=AF=2DG,∠FAD=∠BDM,證出∠AHD=90°,即可得出結(jié)論.
(1)設(shè)BE交AD于點(diǎn)H,如圖1所示:
∵AD,BE分別為BC,AC邊上的高,
∴∠BEA=∠ADB=90°.
∵∠ABC=45°,
∴△ABD是等腰直角三角形,
∴AD=BD.
∵∠AHE=∠BHD,
∴∠DAC=∠DBH.
∵∠ADB=∠FDE=90°,
∴∠ADE=∠BDF.
在△DAE和△DBF中,∵,
∴△DAE≌△DBF(ASA),
∴BF=AE,DF=DE,
∴△FDE是等腰直角三角形,
∴∠DFE=45°.
∵G為BE中點(diǎn),
∴BF=EF,
∴AE=EF,
∴△AEF是等腰直角三角形,
∴∠AFE=45°,
∴∠AFD=90°,
∴AF⊥DF;
(2)AF=2DG,且AF⊥DG.理由如下:
延長DG至M,使GM=DG,交AF于H,連接BM,如圖2所示:
在△BGM和△EGD中,∵,
∴△BGM≌△EGD(SAS),
∴∠MBE=∠FED=45°=∠EFD,BM=DE=DF,
由(1)知:∠DAC=∠DBE,
∴∠MBD=∠MBE+∠DBE=45°+∠DBE,∠EFD=45°=∠DBE+∠BDF,
∴∠BDF=45°﹣∠DBE.
∵∠ADE=∠BDF,
∴∠ADF=90°﹣∠BDF=45°+∠DBE=∠MBD.
在△BDM和△DAF中,∵,
∴△BDM≌△DAF(SAS),
∴DM=AF=2DG,∠FAD=∠BDM.
∵∠BDM+∠MDA=90°,
∴∠MDA+∠FAD=90°,
∴∠AHD=90°,
∴AF⊥DG,
∴AF=2DG,且AF⊥DG.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李大媽加盟了“紅紅”全國燒烤連鎖店,該公司的宗旨是“薄利多銷”,經(jīng)市場調(diào)查發(fā)現(xiàn),當(dāng)羊肉串的單價(jià)定為元時(shí),每天能賣出串,在此基礎(chǔ)上,每加價(jià)元李大媽每天就會(huì)少賣出串,考慮了所有因素后李大媽的每串羊肉串的成本價(jià)為元,若李大媽每天銷售這種羊肉串想獲得利潤是元,那么請問這種羊肉串應(yīng)怎樣定價(jià)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是半圓的直徑,點(diǎn)是半圓上一點(diǎn),連結(jié),并延長到點(diǎn),使PC =,連結(jié).
求證:.
若,.
①求弦的長.②求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)中,點(diǎn)A(1,2),將AO繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)O的對應(yīng)點(diǎn)B恰好落在雙曲線y=(x>0)上,則k的值為( )
A. 2 B. 3 C. 4 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)M、N是∠ABC與∠ACB三等分線的交點(diǎn),連接MN
(1)求證:MN平分∠BMC.
(2)若∠A=60°,求∠BMN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,則下列結(jié)論:①ac>0;②a-b+c<0;當(dāng)時(shí),;,其中錯(cuò)誤的結(jié)論有
A. ②③ B. ②④ C. ①③ D. ①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=x2﹣2x﹣15,y=4x﹣23,交于A、B點(diǎn)(A在B的左側(cè)),動(dòng)點(diǎn)P從A點(diǎn)出發(fā),先到達(dá)拋物線的對稱軸上的某點(diǎn)E再到達(dá)x軸上的某點(diǎn)F,最后運(yùn)動(dòng)到點(diǎn)B.若使點(diǎn)P動(dòng)的總路徑最短,則點(diǎn)P運(yùn)動(dòng)的總路徑的長為( 。
A. 10 B. 7 C. 5 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】胖娃、猴子兩人在1800米長的直線道路上跑步,胖娃、猴子兩人同起點(diǎn)、同方向出發(fā),并分別以不同的速度勻速前進(jìn).已知,胖娃出發(fā)30秒后,猴子出發(fā),猴子到終點(diǎn)后立即返回,并以原來的速度前進(jìn),最后與胖娃相遇,此時(shí)跑步結(jié)束. 如圖,(米)表示胖娃、猴子兩人之間的距離,x(秒)表示胖娃出發(fā)的時(shí)間,圖中折線及數(shù)據(jù)表示整個(gè)跑步過程中y與x函數(shù)關(guān)系.那么,猴子到終點(diǎn)后_______秒與胖娃相遇.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長為3,點(diǎn)E,F(xiàn)分別在射線DC,DA上運(yùn)動(dòng),且DE=DF.連接BF,作EH⊥BF所在直線于點(diǎn)H,連接CH.
(1)如圖1,若點(diǎn)E是DC的中點(diǎn),CH與AB之間的數(shù)量關(guān)系是 ;
(2)如圖2,當(dāng)點(diǎn)E在DC邊上且不是DC的中點(diǎn)時(shí),(1)中的結(jié)論是否成立?若成立給出證明;若不成立,說明理由;
(3)如圖3,當(dāng)點(diǎn)E,F(xiàn)分別在射線DC,DA上運(yùn)動(dòng)時(shí),連接DH,過點(diǎn)D作直線DH的垂線,交直線BF于點(diǎn)K,連接CK,請直接寫出線段CK長的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com