【題目】定義:數(shù)學(xué)活動(dòng)課上,李老師給出如下定義:如果一個(gè)三角形有一邊上的中線等于這條邊的一半,那么稱三角形為“智慧三角形”.

理解:(1)如圖,已知是⊙上兩點(diǎn),請(qǐng)?jiān)趫A上找出滿足條件的點(diǎn),使為“智慧三角形”(畫(huà)出點(diǎn)的位置,保留作圖痕跡);

(2)如圖,在正方形中, 的中點(diǎn), 上一點(diǎn),且,試判斷是否為“智慧三角形”,并說(shuō)明理由;

運(yùn)用:(3)如圖,在平面直角坐標(biāo)系中,⊙的半徑為,點(diǎn)是直線上的一點(diǎn),若在⊙上存在一點(diǎn),使得為“智慧三角形”,其面積的最小值為______.

【答案】

【解析】分析:(1)連結(jié)AO并且延長(zhǎng)交圓于C1,連結(jié)BO并且延長(zhǎng)交圓于C2,即可求解;

(2)設(shè)正方形的邊長(zhǎng)為4a,表示出DF、CF以及EC、BE的長(zhǎng),然后根據(jù)勾股定理列式表示出AF2、EF2、AE2,再根據(jù)勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性質(zhì)可得△AEF為“智慧三角形”;

(3)根據(jù)“智慧三角形”的定義可得△OPQ為直角三角形,根據(jù)題意可得一條直角邊為1,當(dāng)斜邊最短時(shí),另一條直角邊最短,則面積取得最小值,由垂線段最短可得斜邊最短為3,根據(jù)勾股定理可求另一條直角邊,再根據(jù)三角形面積可求斜邊的高,即點(diǎn)P的橫坐標(biāo),再根據(jù)勾股定理可求點(diǎn)P的縱坐標(biāo),從而求解.

詳解:1)如圖1所示:

2AEF是否為智慧三角形

理由如下:設(shè)正方形的邊長(zhǎng)為4a,

EDC的中點(diǎn),

DE=CE=2a,

BCFC=41

FC=a,BF=4a﹣a=3a,

RtADE中,AE2=4a2+2a2=20a2

RtECF中,EF2=2a2+a2=5a2

RtABF中,AF2=4a2+3a2=25a2,

AE2+EF2=AF2,

∴△AEF是直角三角形,

∵斜邊AF上的中線等于AF的一半,

∴△AEF智慧三角形;

3)如圖3所示:

智慧三角形的定義可得△OPQ為直角三角形,

根據(jù)題意可得一條直角邊為1,當(dāng)斜邊最短時(shí),另一條直角邊最短,則面積取得最小值,

由垂線段最短可得斜邊最短為3,

由勾股定理可得PQ=

PM=1×2÷3=,

面積的最小值為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各式能用完全平方公式分解的是(

A.a2+2ax+4x2B.-a2-4ax+4x2

C.-2x+1+4x2D.x4+4+4x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,的中點(diǎn)

1)求證:四邊形是平行四邊形。

2)求證:四邊形是菱形。

3)如果時(shí),求四邊形ADBE的面積

4)當(dāng) 度時(shí),四邊形是正方形(不證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算

17-13+8

2) -4xy22xy2;

3;

4

5;

6;

7 ;

8-[-2

9;

10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在中,,點(diǎn)為直線上一動(dòng)點(diǎn)(點(diǎn)不與重合).為邊作正方形,連接.

(1)如圖1,當(dāng)點(diǎn)在線段上時(shí),求證:.

(2)如圖2,當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),其他條件不變,請(qǐng)直接寫(xiě)出三條線段之間的關(guān)系;

(3)如圖3,當(dāng)點(diǎn)在線段的反向延長(zhǎng)線上時(shí),且點(diǎn)分別在直線的兩側(cè).其他條件不變,若連接正方形對(duì)角線,交點(diǎn)為,連接,探究的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在ABC中,A=30°,點(diǎn)P從點(diǎn)A出發(fā)以2cm/s的速度沿折線A﹣C﹣B運(yùn)動(dòng),點(diǎn)Q從點(diǎn)A出發(fā)以a(cm/s)的速度沿AB運(yùn)動(dòng),P,Q兩點(diǎn)同時(shí)出發(fā),當(dāng)某一點(diǎn)運(yùn)動(dòng)到點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為x(s),APQ的面積為y(cm2),y關(guān)于x的函數(shù)圖象由C1,C2兩段組成,如圖2所示.

(1)求a的值;

(2)求圖2中圖象C2段的函數(shù)表達(dá)式;

(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到線段BC上某一段時(shí)APQ的面積,大于當(dāng)點(diǎn)P在線段AC上任意一點(diǎn)時(shí)APQ的面積,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形紙片ABCD沿對(duì)角線BD折疊,點(diǎn)C落在點(diǎn)E,BEAD于點(diǎn)F,連接AE

求證:(1BFDF

2)若AB6,AD8BF的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,等腰直角三角形的直角頂點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,求點(diǎn)的坐標(biāo).

2)依據(jù)(1)的解題經(jīng)驗(yàn),請(qǐng)解決下面問(wèn)題:

如圖2,點(diǎn),兩點(diǎn)均在軸上,且,分別以為腰在第一、第二象限作等腰連接,與軸交于點(diǎn)的長(zhǎng)度是否發(fā)生改變?若不變,求的值;若變化,求 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:數(shù)學(xué)活動(dòng)課上,李老師給出如下定義:如果一個(gè)三角形有一邊上的中線等于這條邊的一半,那么稱三角形為“智慧三角形”.

理解:(1)如圖,已知是⊙上兩點(diǎn),請(qǐng)?jiān)趫A上找出滿足條件的點(diǎn),使為“智慧三角形”(畫(huà)出點(diǎn)的位置,保留作圖痕跡);

(2)如圖,在正方形中, 的中點(diǎn), 上一點(diǎn),且,試判斷是否為“智慧三角形”,并說(shuō)明理由;

運(yùn)用:(3)如圖,在平面直角坐標(biāo)系中,⊙的半徑為,點(diǎn)是直線上的一點(diǎn),若在⊙上存在一點(diǎn),使得為“智慧三角形”,其面積的最小值為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案