【題目】如圖,的直徑,過點(diǎn)的切線,弦,交于點(diǎn),且弧,連接,延長(zhǎng)于點(diǎn)

1)求證:是等邊三角形;

2)若,求的半徑.

【答案】1)見解析;(22

【解析】

1)由AB是⊙O的直徑,BM是⊙O的切線,得到ABBE,由于CDBE,得到CDAB,根據(jù)垂徑定理得到弧,于是得到弧=AC ,問題即可得證;
2)連接OE,過OONADN,由(1)知,ACD是等邊三角形,得到∠DAC=60°又直角三角形的性質(zhì)得到BE=AE,ON=AO,設(shè)⊙O的半徑為:rON=r,AN=DN=r,由于得到EN=2+r,BE=AE= ,在RtDEFRtBEO中,由勾股定理列方程即可得到結(jié)論.

1)證明:∵AB是⊙O的直徑,BM是⊙O的切線,
ABBE,
CDBE
CDAB,
∴弧AD=AC,
∵弧,
∴弧=AC,
AD=AC=CD
∴△ACD是等邊三角形;
2)解:連接OE,過OONADN,由(1)知,ACD是等邊三角形,
∴∠DAC=60°
AD=AC,CDAB
∴∠DAB=30°,
BE=AE,ON=AO,
設(shè)⊙O的半徑為:r,


ON=r,AN=DN=r,
EN=2+rBE=AE= ,
RtNEORtBEO中,
OE2=ON2+NE2=OB2+BE2,
即(2+2+ 2=r2+()2,
r=2,
OE2=()2+25=28,
OE=2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為表彰在了不起我的國(guó)演講比賽中獲獎(jiǎng)的選手,決定購(gòu)買甲、乙兩種圖書作為獎(jiǎng)品.已知購(gòu)買30本甲種圖書,50本乙種圖書共需1350元;購(gòu)買50本甲種圖書,30本乙種圖書共需1450元.

1)求甲、乙兩種圖書的單價(jià)分別是多少元?

2)學(xué)校要求購(gòu)買甲、乙兩種圖書共40本,且甲種圖書的數(shù)量不少于乙種圖書數(shù)量的,請(qǐng)?jiān)O(shè)計(jì)最省錢的購(gòu)書方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我校小偉同學(xué)酷愛健身,一天去爬山鍛煉,在出發(fā)點(diǎn)C處測(cè)得山頂部A的仰角為30度,在爬山過程中,每一段平路(CD、EF、GH)與水平線平行,每一段上坡路(DE、FGHA)與水平線的夾角都是45度,在山的另一邊有一點(diǎn)BB、C、D同一水平線上),斜坡AB的坡度為21,且AB長(zhǎng)為900,其中小偉走平路的速度為65.7/分,走上坡路的速度為42.3/分.則小偉從C出發(fā)到坡頂A的時(shí)間為(  )(圖中所有點(diǎn)在同一平面內(nèi)1.41,1.73

A.60分鐘B.70分鐘C.80分鐘D.90分鐘

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形EFGH的頂點(diǎn)E,G分別在菱形ABCD的邊AD,BC上,頂點(diǎn)FH在菱形ABCD的對(duì)角線BD上.

1)求證:BG=DE;

2)若EAD中點(diǎn),FH=2,求菱形ABCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某高鐵站已于幾年前投入使用,計(jì)劃在廣場(chǎng)內(nèi)種植兩種花木共10500棵,若花木數(shù)量比花木數(shù)量的一半多1500棵.

1兩種花木的數(shù)量分別是多少棵?

2)如果園林處安排27人同時(shí)種植這兩種花木,每人每天能種植花木50棵或花木30棵,應(yīng)分別安排多少人種植花木和花木,才能確保同時(shí)完成各自的任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,已知:在中,,分別在上,連接,點(diǎn)為線段的中點(diǎn),連接,則線段之間的數(shù)量關(guān)系是 ,位置關(guān)系是

2)如圖2所示,已知:正方形斜邊的中點(diǎn)與點(diǎn)重合,直角頂點(diǎn)落在正方形的邊上,的兩直角邊分別交邊于兩點(diǎn)(點(diǎn)與點(diǎn)重合),求證:;

3)如圖3,若將繞著點(diǎn)逆時(shí)針旋轉(zhuǎn),兩直角邊分別交邊于兩點(diǎn),如圖3所示:判斷四條線段之間是否存在什么確定的相等關(guān)系?若存在,證明你的結(jié)論.若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知綠茶每千克成本50元,經(jīng)研究發(fā)現(xiàn)銷量ykg)隨銷售單價(jià)x(元/kg)的變化而變化,具體變化規(guī)律如表所示:

銷售單價(jià)x(元/kg

70

75

80

85

90

月銷售量ykg

100

90

80

70

60

1)請(qǐng)根據(jù)上表,寫出yx之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍);

2)若該綠茶的月銷售利潤(rùn)為w(元),且售單價(jià)得高于80元,求wx之間的函數(shù)關(guān)系式,并求出x為何值時(shí),w的值最大?

3)已知商家經(jīng)銷一種綠茶,用于裝修門面已投資3000元,在第一個(gè)月,按使w獲得最大值的銷售單價(jià)進(jìn)行銷售后;在第二個(gè)月受物價(jià)部門干預(yù),銷售單價(jià)不得高于78元,要想在全部收回裝修投資的基礎(chǔ)上使這兩個(gè)月的總利潤(rùn)至少達(dá)到1722元,求第二個(gè)月的銷售單價(jià)的取值范圍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CDO的直徑,點(diǎn)BO上,連接BC、BD,直線ABCD的延長(zhǎng)線相交于點(diǎn)A,AB2ADAC,OEBD交直線AB于點(diǎn)E,OEBC相交于點(diǎn)F

1)求證:直線AEO的切線;

2)若O的半徑為3cosA,求OF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校以隨機(jī)抽樣的方式開展了中學(xué)生喜歡數(shù)學(xué)的程度的問卷調(diào)查,調(diào)查的結(jié)果分為A(不喜歡)、B(一般)、C(比較喜歡)、D(非常喜歡)四個(gè)等級(jí),圖1、圖2是根據(jù)采集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計(jì)圖.

1)本次抽樣調(diào)查的樣本容量是;

2)請(qǐng)直接在圖2中補(bǔ)全C對(duì)應(yīng)的條形統(tǒng)計(jì)圖;

3)若該校有學(xué)生1000人,請(qǐng)根據(jù)調(diào)查結(jié)果,估計(jì)比較喜歡的學(xué)生人數(shù)為多少人.

查看答案和解析>>

同步練習(xí)冊(cè)答案