【題目】某高鐵站已于幾年前投入使用,計劃在廣場內(nèi)種植兩種花木共10500棵,若花木數(shù)量比花木數(shù)量的一半多1500棵.
(1)兩種花木的數(shù)量分別是多少棵?
(2)如果園林處安排27人同時種植這兩種花木,每人每天能種植花木50棵或花木30棵,應分別安排多少人種植花木和花木,才能確保同時完成各自的任務?
【答案】(1)花木的數(shù)量是6000棵,花木的數(shù)量是4500棵;(2)安排12人種植花木,15人種植花木,才能確保同時完成各自的任務.
【解析】
(1)根據(jù)在廣場內(nèi)種植A,B兩種花木共10500棵,若B花木數(shù)量是A花木數(shù)量的一半多1500棵,可以列出相應的二元一次方程組,從而可以解答本題;
(2)根據(jù)題意可以列出相應的分式方程,從而可以解答本題,最后要檢驗.
解:(1)設花木的數(shù)量是棵,花木的數(shù)量是棵.
根據(jù)題意,得
解得
答:花木的數(shù)量是6000棵,花木的數(shù)量是4500棵.
(2)設安排人種植花木,則安排人種植花木根據(jù)題意,得,
解得,
經(jīng)檢驗,是原方程的解,
(人).
答:安排12人種植花木,15人種植花木,才能確保同時完成各自的任務.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x﹣1的圖象與x軸交于點A,與y軸交于點B,與反比例函數(shù)圖象的一個交點為M(﹣2,m).
(1)求反比例函數(shù)的解析式;
(2)當y2>y1時,求x的取值范圍;
(3)求點B到直線OM的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定四邊形ABCD為平行四邊形的是( )
A.AB∥CD,AD∥BCB.OA=OC,OB=OD
C.AD=BC,AB∥CDD.AB=CD,AD=BC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】涌泉鎮(zhèn)是中國無核蜜桔之鄉(xiāng),已知某蜜桔種植大戶馮大爺?shù)拿劢鄢杀緸?/span>2元/千克,如果在未來90天蜜桔的銷售單價p(元/千克)與時間t(天)之間的函數(shù)關系式為p=,且蜜桔的日銷量y(千克)與時間t(天)滿足一次函數(shù)關系,其部分數(shù)據(jù)如下表所示:
時間t/天 | 1 | 10 | 20 | 40 | 70 | 90 |
日銷售量y/千克 | 105 | 150 | 200 | 300 | 450 | 550 |
(1)求y與t之間的函數(shù)表達式;
(2)在未來90天的銷售中,預測哪一天的日銷售利潤最大?最大日銷售利潤為多少元?
(3)在實際銷售的后50天中,馮大爺決定每銷售1千克蜜桔就捐贈n元利潤(n<5)給留守兒童作為助學金,銷售過程中馮大爺發(fā)現(xiàn),恰好從第51天開始,和前一天相比,扣除捐贈后的日銷售利潤逐日減少,請求出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2﹣2ax+c,當﹣3<x<﹣2時,y>0;當3<x<4時,y<0.則a與c滿足的關系式是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】地和地之間的鐵路交通設有特快列車和普通列車兩種車次,某天一輛普通列車從A地出發(fā)勻速駛向地,同時另一輛特快列車從地出發(fā)勻速駛向地,兩車與地的距離(千米)與行駛時間(時)的函數(shù)關系如圖所示.
(1)地到地的距離為 千米,普通列車到達地所用時間為 小時;
(2)求特快列車與地的距離與的函數(shù)關系式;
(3)在、兩地之間有一座鐵路橋,特快列車到鐵路橋后又行駛小時與普通列車相遇,直接寫出地與鐵路橋之間的距離 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com