【題目】如圖,直線與直線相交于點(diǎn),且點(diǎn)的縱坐標(biāo)為,直線交軸于點(diǎn)將直線向上平移個(gè)單位得直線,交軸于點(diǎn),交直線于點(diǎn)且點(diǎn)的橫坐標(biāo)為
(1)求直線的解析式;
(2)連接求的面積.
【答案】(1);(2).
【解析】
(1)根據(jù)平移的規(guī)律即可求得直線的解析式;
(2)根據(jù)一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征求得、的坐標(biāo),進(jìn)而根據(jù)待定系數(shù)法求得直線的解析式,從而求得的坐標(biāo),由直線的解析式求得的坐標(biāo),然后根據(jù)求得即可.
解:(1)將直線向上平移3個(gè)單位得直線,
直線;
(2)直線與直線相交于點(diǎn),且點(diǎn)的縱坐標(biāo)為,
把代入得,,
解得,
,
直線交直線于點(diǎn),且點(diǎn)的橫坐標(biāo)為.
把代入得,,
,,
設(shè)直線的解析式為,
直線經(jīng)過點(diǎn)、,
,解得,
直線的解析式為,
令,求得,
,
直線,
令,求得,
,
,
的面積為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)4992
(2)82018×(﹣0.125)2019
(3)3a2b(﹣a4b2)+(a2b)3
(4)(a+1)2﹣a(a﹣1)
(5)解二元一次方程組
(6)先化簡(jiǎn),再求值:(x+1)2﹣(x﹣1)(x+4),其中x=﹣2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥AB于E,F在AC上,且BD=DF.
(1)求證:CF=EB;
(2)試判斷AB與AF,EB之間存在的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)購(gòu)進(jìn)一批日用品,若按每件5元的價(jià)格銷售,每月能賣出3萬件;若按每件6元的價(jià)格銷售,每月能賣出2萬件,假定每月銷售件數(shù) (件)與價(jià)格 (元/件)之間滿足一次函數(shù)關(guān)系.
(1)試求:y與x之間的函數(shù)關(guān)系式;
(2)這批日用品購(gòu)進(jìn)時(shí)進(jìn)價(jià)為4元,則當(dāng)銷售價(jià)格定為多少時(shí),才能使每月的潤(rùn)最大?每月的最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC= ,BC=1,D在AC上,將△ADB沿直線BD翻折后,點(diǎn)A落在點(diǎn)E處,如果AD⊥ED,那么△ABE的面積是( )
A.1
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一塊矩形ABCD的空地上劃一塊四邊形MNPQ進(jìn)行綠化.如圖,四邊形的頂點(diǎn)在矩形的邊上,且AN=AM=CP=CQ=xcm,已知矩形的邊BC=200m,邊AB=am,a為大于200的常數(shù),設(shè)四邊形MNPQ的面積為sm2
(1)求S關(guān)于x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍.
(2)若a=400,求S的最大值,并求出此時(shí)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=BC=1,CD=,DA=1,且∠B=90°.求:
(1)∠DAC的度數(shù);
(2)四邊形ABCD的面積(結(jié)果保留根號(hào));
(3)將△ABC沿AC翻折至△AB′C,如圖所示,連接B′D,求△AB′D的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D,E分別是⊙O的內(nèi)接正三角形ABC的AB,AC邊上的中點(diǎn),若⊙O的半徑為2,則DE的長(zhǎng)等于( )
A.
B.
C.1
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在正方形網(wǎng)格中有一個(gè)△ABC,按要求進(jìn)行下列作圖(只能借助于網(wǎng)格).
(1)畫出△ABC中BC邊上的高AH和BC邊上的中線AD.
(2)畫出將△ABC向右平移5格又向上平移3格后的△A′B′C′.
(3)△ABC的面積為 .
(4)若連接AA′,CC′,則這兩條線段之間的關(guān)系是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com