【題目】計算:
(1)4992
(2)82018×(﹣0.125)2019
(3)3a2b(﹣a4b2)+(a2b)3
(4)(a+1)2﹣a(a﹣1)
(5)解二元一次方程組
(6)先化簡,再求值:(x+1)2﹣(x﹣1)(x+4),其中x=﹣2.
【答案】(1)249001;(2);(3)﹣a6b3;(4)3a+1;(5);(6)7.
【解析】
(1)根據(jù)完全平方公式即可求出答案.
(2)根據(jù)實數(shù)的運算法則即可求出答案.
(3)根據(jù)整式的運算法則即可求出答案.
(4)根據(jù)完全平方公式即可求出答案.
(5)根據(jù)二元一次方程組的解法即可求出答案.
(6)先根據(jù)整式的運算法則進行化簡,然后將x的值代入即可求出答案.
解:(1)原式=
=5002﹣2×500+1
=250000﹣1000+1
=249001;
(2)原式=82018×()2018×()
=(﹣1)2018×()
=;
(3)原式=3a2b(﹣a4b2)+a6b3
=﹣2a6b3+a6b3
=﹣a6b3;
(4)原式=a2+2a+1﹣a2+a
=3a+1;
(5)
②×2得:6x+2y=10③,
①+③得:7x=7,
x=1,
將x=1代入①得:1﹣2y=﹣3,
∴y=2,
∴方程組的解;
(6)原式=x2+2x+1﹣(x2+3x﹣4)
=x2+2x+1﹣x2﹣3x+4
=﹣x+5,
當x=﹣2時,
原式=2+5
=7.
科目:初中數(shù)學 來源: 題型:
【題目】已知數(shù)組:,,,…記第一個數(shù)為a1,第二個數(shù)為a2,第n個數(shù)為an,若an是方程=1的解,則n等于_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電器超市銷售每臺進價分別為200元,170元的A,B兩種型號的電風扇,表中是近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 5臺 | 1800元 |
第二周 | 4臺 | 10臺 | 3100元 |
(進價、售價均保持不變,利潤=銷售收入-進貨成本)
(1)求A,B兩種型號的電風扇的銷售單價.
(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風扇共30臺,則A種型號的電風扇最多能采購多少臺?
(3)在(2)的條件下,超市銷售完這30臺電風扇能否實現(xiàn)利潤為1400元的目標?若能,請給出相應的采購方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,點P從點C開始沿射線CA方向以1cm/s的速度運動;同時,點Q也從點C開始沿射線CB方向以3cm/s的速度運動.
(1)幾秒后△PCQ的面積為3cm2?此時PQ的長是多少?(結果用最簡二次根式表示)
(2)幾秒后以A、B、P、Q為頂點的四邊形的面積為22cm2?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校組織學生乘汽車去自然保護區(qū)野營。汽車先以60km/h的速度在平路上行駛,后又以30km/h的速度爬坡到目的地,共有了6.5 h ;返回時, 汽車以40km/h的速度下坡,又以50km/h的速度在平路上行駛,共有用了6 h. 學校距自然保護區(qū)有多遠 ?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,AD=4,點E是對角線AC上一點,連接DE,過點E作EF⊥ED,交AB于點F,連接DF,交AC于點G,將△EFG沿EF翻折,得到△EFM,連接DM,交EF于點N,若點F是AB的中點,則△EMN的周長是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下面的證明:已知,如圖,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD,求證:∠EGF=90°
證明:∵HG∥AB(已知)
∴∠1=∠3
又∵HG∥CD(已知)
∴∠2=∠4
∵AB∥CD(已知)
∴∠BEF+ =180°
又∵EG平分∠BEF(已知)
∴∠1=∠
又∵FG平分∠EFD(已知)
∴∠2=∠
∴∠1+∠2=( )
∴∠1+∠2=90°
∴∠3+∠4=90° 即∠EGF=90°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長是16,點E在邊AB上,AE=3,點F是邊BC上不與點B,C重合的一個動點,把△EBF沿EF折疊,點B落在B′處.若△CDB′恰為等腰三角形,則DB′的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與直線相交于點,且點的縱坐標為,直線交軸于點將直線向上平移個單位得直線,交軸于點,交直線于點且點的橫坐標為
(1)求直線的解析式;
(2)連接求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com