【題目】如圖,矩形中,,,以為直徑的半圓與相切,連接. 則陰影部分的面積為( )
A.B.C.D.
【答案】D
【解析】
設(shè)矩形ABCD與以AB為直徑的半圓相切于點(diǎn)E,圓的半徑為O,連接OE,先證明四邊形OBCE是正方形,將S△ABC分割成陰影部分的面積和由弧BE、線(xiàn)段BC、CE圍成的面積,然后將S△ABC減去由弧BE、線(xiàn)段BC、CE圍成的面積即可求解陰影部分面積.
如圖,設(shè)矩形ABCD與以AB為直徑的半圓相切于點(diǎn)E,圓的半徑為O,連接OE,
∵CD與半圓相切,
∴OE⊥CD,
∵四邊形ABCD是矩形,AB=10,AD=5,
∴AD=BC=5,AB=CD=10
∴OB=AB=5=BC
∴四邊形OBCE是正方形,
由弧BE、線(xiàn)段BC、CE圍成的面積=S正方形OBCE-S扇形BOE=
∴陰影部分的面積=S△BCD-==
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人開(kāi)車(chē)從家出發(fā)去植物園游玩,設(shè)汽車(chē)行駛的路程為S(千米),所用時(shí)間為t(分),S與t之間的函數(shù)關(guān)系如圖所示.若他早上8點(diǎn)從家出發(fā),汽車(chē)在途中停車(chē)加油一次,則下列描述中,不正確的是( )
A.汽車(chē)行駛到一半路程時(shí),停車(chē)加油用時(shí)10分鐘
B.汽車(chē)一共行駛了60千米的路程,上午9點(diǎn)5分到達(dá)植物園
C.加油后汽車(chē)行駛的速度為60千米/時(shí)
D.加油后汽車(chē)行駛的速度比加油前汽車(chē)行駛的速度快
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某教研機(jī)構(gòu)為了了解初中生課外閱讀名著的現(xiàn)狀,隨機(jī)抽取了某校50名初中生進(jìn)行調(diào)查,依據(jù)相關(guān)數(shù)據(jù)繪制成了以下不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
類(lèi)別 | 重視 | 一般 | 不重視 |
人數(shù) | a | 15 | b |
(1)求表格中a,b的值;
(2)請(qǐng)補(bǔ)全統(tǒng)計(jì)圖;
(3)若某校共有初中生2000名,請(qǐng)估計(jì)該校“重視課外閱讀名著”的初中生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于平面內(nèi)的點(diǎn)與射線(xiàn),射線(xiàn)上與點(diǎn)距離最近的點(diǎn)與端點(diǎn)的距離叫做點(diǎn)關(guān)于射線(xiàn)的側(cè)邊距,記作.
(1)在菱形中,,.則__________,__________.
(2)在中,若,則是否必為正方形,請(qǐng)說(shuō)明理由;
(3)如圖,已知點(diǎn)是射線(xiàn)上一點(diǎn),,以為半徑畫(huà),點(diǎn)是上任意點(diǎn),為線(xiàn)段的中點(diǎn).
①若,則__________;
②設(shè),,求關(guān)于的函數(shù)關(guān)系式并寫(xiě)出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點(diǎn)D,O為AB上一點(diǎn),經(jīng)過(guò)點(diǎn)A、D的⊙O分別交邊AB、AC于點(diǎn)E、F.
(1)求證:BC是⊙O的切線(xiàn);
(2)若BE=16,sinB=,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,以為直徑作⊙,在⊙上一點(diǎn),.
(1)求證:是⊙的切線(xiàn);
(2)過(guò)作分別與、和⊙交于點(diǎn)、、,若,.
①求⊙的半徑長(zhǎng);
②直接寫(xiě)出的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,點(diǎn)E在BC上,AE=AD,DF⊥AE,垂足為F.
(1)求證.DF=AB;
(2)若∠FDC=30°,且AB=4,求AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為培養(yǎng)學(xué)生庭好的學(xué)習(xí)習(xí)慣,某校九年級(jí)年級(jí)組舉行“整理錯(cuò)題集“的征集展示活動(dòng),并隨機(jī)對(duì)部分學(xué)生三年“整理題集”中收集的錯(cuò)題數(shù)x進(jìn)行了抽樣調(diào)查,根據(jù)收集的數(shù)據(jù)繪制了下面不完整的統(tǒng)計(jì)圖表.
分組 | 頻數(shù) | 頻率 |
第一組(0≤x<120) | 3 | 0.15 |
第二組(120≤x<160) | 8 | a |
第三組(160≤x<200) | 7 | 0.35 |
第四組(200≤x<240) | b | 0.1 |
請(qǐng)你根據(jù)圖表中的信息完成下列問(wèn)題:
(1)頻數(shù)分布表中a= ,b= ,并將統(tǒng)計(jì)圖補(bǔ)充完整;
(2)如果該校九年級(jí)共有學(xué)生360人,估計(jì)整理的錯(cuò)題數(shù)在160或160題以上的學(xué)生有多少人?
(3)已知第一組中有兩個(gè)是甲班學(xué)生,第四組中有一個(gè)是甲班學(xué)生,老師隨機(jī)從這兩個(gè)組中各選一名學(xué)生談?wù)礤e(cuò)題的體會(huì),則所選兩人正好都是甲班學(xué)生的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們學(xué)過(guò)正多邊形及其性質(zhì),了解了正多邊形各邊相等、各內(nèi)角相等、具有軸對(duì)稱(chēng)性和旋轉(zhuǎn)不變....下面我們繼續(xù)探究正五邊形相關(guān)線(xiàn)段及角的關(guān)系:
如圖1,正五邊形中,
連接,并作,則 度;
連接交于點(diǎn),求證:四邊形是菱形;
如圖2,是一個(gè)斜網(wǎng)格圖, 每個(gè)小菱形的較小內(nèi)角是,請(qǐng)利用一把角尺(只能畫(huà)直角和直線(xiàn),不能度量,可以用三角板替代)在網(wǎng)格圖中畫(huà)出以為一邊的正五邊形(保留作圖痕跡).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com