【題目】綜合實(shí)踐課上,某小組同學(xué)將直角三角形紙片放到橫線紙上(所有橫線都平行,且相鄰兩條平行線的距離為1),使直角三角形紙片的頂點(diǎn)恰巧在橫線上,發(fā)現(xiàn)這樣能求出三角形的邊長(zhǎng).
(1)如圖1,已知等腰直角三角形紙片△ABC,∠ACB=90°,AC=BC,同學(xué)們通過構(gòu)造直角三角形的辦法求出三角形三邊的長(zhǎng),則AB=__________;
(2)如圖2,已知直角三角形紙片△DEF,∠DEF=90°,EF=2DE,求出DF的長(zhǎng);
(3)在(2)的條件下,若橫格紙上過點(diǎn)E的橫線與DF相交于點(diǎn)G,直接寫出EG的長(zhǎng).
【答案】AB=;
【解析】試題分析:(1)如圖,過點(diǎn)A、B分別作點(diǎn)C所在橫線的垂線,垂足分別為D、E,然后證明△ADC≌△CEB,從而可得CE=AD=3,CD=BE=2,由勾股定理求得AC,BC的長(zhǎng),再由勾股定理即可求得AB的長(zhǎng);
(2)如圖所示,過點(diǎn)E作橫線的垂線,然后證明△DME∽△ENF,再根據(jù)相似三角形的性質(zhì)進(jìn)行推導(dǎo)即可得;
(3)連接DN與EG交于點(diǎn)P,根據(jù)相似三角形的性質(zhì)即可得.
試題解析:(1)過點(diǎn)A、B分別作點(diǎn)C所在橫線的垂線,垂足分別為D、E,
∴∠ADC=∠BEC=90°,AD=3,BE=2,
∴∠DAC+∠ACD=90°,
∵∠ACB=90°,∴∠ACD+∠BCE=90°,
∴∠DAC=∠ECB,
∵AC=BC,
∴△ADC≌△CEB,∴CE=AD=3,CD=BE=2,
∴AC=BC= ,∴AB=,
故答案為: ;
(2)過點(diǎn)E作橫線的垂線,交l1,l2于點(diǎn)M,N,
∴∠DME=∠EDF= 90°,
∵∠DEF=90°,
∴∠2+∠3=90°,
∵∠1+∠3=90°,
∴∠1=∠2,
∴△DME∽△ENF ,
∴,
∵EF=2DE,
∴,
∵ME=2,EN=3,
∴NF=4,DM=1.5,
根據(jù)勾股定理得DE=2.5,EF=5, ;
(3)連接DN,交EG于點(diǎn)P,
∵EG//DM,∴△DMN∽△PEN,
∴PE:DM=EN:MN,即PE:1.5=3:5,∴PE=0.9,
同理PG=1.6,∴EG=PE+PG=2.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABD和∠BDC的平分線交于E,BE交CD于點(diǎn)F,∠1+∠2=90°.求證:
(1)AB∥CD;
(2)∠2+∠3=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩車從A市去往B市,甲比乙出發(fā)了2個(gè)小時(shí),甲到達(dá)B市后停留一段時(shí)間返回,乙到達(dá)B市后立即返回.甲車往返的速度都為40千米/時(shí),乙車往返的速度都為20千米/時(shí),下圖是兩車距A市的路程S(千米)與行駛時(shí)間t(小時(shí))之間的函數(shù)圖象,請(qǐng)結(jié)合圖象回答下列問題:
(1)A、B兩市的距離是 千米,甲到B市后 小時(shí)乙到達(dá)B市;
(2)求甲車返回時(shí)的路程s(千米)與時(shí)間t(小時(shí))之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)請(qǐng)直接寫出甲車從B市往回返后再經(jīng)過幾小時(shí)兩車相遇.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,AD∥BC,且AD>BC,BC=6cm,P、Q分別從A、C同時(shí)出發(fā),P以1cm/s的速度由A向D運(yùn)動(dòng),Q以2cm/s的速度由C出發(fā)向B運(yùn)動(dòng),幾秒后四邊形ABQP是平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2-4x+3.
(1)在網(wǎng)格中,畫出該函數(shù)的圖象.
(2)(1)中圖象與軸的交點(diǎn)記為A,B,若該圖象上存在一點(diǎn)C,且△ABC的面積為3,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】不透明的口袋里裝有白、黃、藍(lán)三種顏色的乒乓球(除顏色外其余都相同),其中白球有2個(gè),黃球有1個(gè),再從中任意摸出1個(gè)球是白球的概率為.
(1)試求袋中藍(lán)球的個(gè)數(shù);
(2)第一次任意摸出一個(gè)球(不放回),第二次再摸出一個(gè)球,請(qǐng)用樹狀圖或列表法表示兩次摸到球的所有可能結(jié)果,并求兩次摸到的球都是白球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完全平方公式:(a±b)2=a2±2ab+b2適當(dāng)?shù)淖冃,可以解決很多的數(shù)學(xué)問題.
例如:若a+b=3,ab=1,求a2+b2的值.
解:因?yàn)?/span>a+b=3,ab=1
所以(a+b)2=9,2ab=2
所以a2+b2+2ab=9,2ab=2
得a2+b2=7
根據(jù)上面的解題思路與方法,解決下列問題:
(1)若(7﹣x)(x﹣4)=1,求(7﹣x)2+(x﹣4)2的值;
(2)如圖,點(diǎn)C是線段AB上的一點(diǎn),以AC、BC為邊向兩邊作正方形,設(shè)AB=5,兩正方形的面積和S1+S2=17,求圖中陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點(diǎn)A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點(diǎn),且∠AFE=∠B.
【1】求證:∠DAF=∠CDE
【2】問△ADF與△DEC相似嗎?為什么?
【3】若AB=4,AD=3,AE=3,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于二次函數(shù)y=ax2+bx+c的圖象有下列命題:
①當(dāng)c=0時(shí),函數(shù)的圖象經(jīng)過原點(diǎn);
②當(dāng)c>0,且函數(shù)的圖象開口向下時(shí),方程ax2+bx+c=0必有兩個(gè)不相等的實(shí)根;
③函數(shù)圖象最高點(diǎn)的縱坐標(biāo)是;
④當(dāng)b=0時(shí),函數(shù)的圖象關(guān)于y軸對(duì)稱.
其中正確命題的個(gè)數(shù)是( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com