【題目】如圖,在平行四邊形ABCD中,過點AAE⊥BC,垂足為E,連接DE,F為線段DE上一點,且∠AFE∠B.

1】求證:∠DAF∠CDE

2】問△ADF△DEC相似嗎?為什么?

3】若AB4,AD3,AE3,AF的長.

【答案】

1見解析。

2△ADF△DEC相似

3

【解析】【試題分析】1)因為∠AFE=∠B,得 ,又因為ADF=CED,根據(jù)兩角對應(yīng)相等,兩三角形相似.

2)在直角三角形ADE中,求出DE=6,再根據(jù)相似三角形對應(yīng)邊成比例,得=,即=解得AF=2;

【試題解析】

(1)∵∠AFE=B,AFE+AFD=180°,B+C=180°,

∴∠AFD=C,

又∵ADBC,

∴∠ADF=CED,

∴△ADF∽△DEC;

(2)AEBC,

DE===6,

∵△ADF∽△DEC,

=,即=

∴AF=2;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸交于點1,0)和點,與軸交于點,對稱軸為直線=1.

(1)求點的坐標(biāo)(用含的代數(shù)式表示)

(2)連接,若△的面積為6,求此拋物線的解析式;

(3)在(2)的條件下,點軸正半軸上的一點,點與點,點與點關(guān)于點成中心對稱,當(dāng)△為直角三角形時,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合實踐課上,某小組同學(xué)將直角三角形紙片放到橫線紙上(所有橫線都平行,且相鄰兩條平行線的距離為1),使直角三角形紙片的頂點恰巧在橫線上,發(fā)現(xiàn)這樣能求出三角形的邊長.

1)如圖1,已知等腰直角三角形紙片ABC,ACB=90°,AC=BC,同學(xué)們通過構(gòu)造直角三角形的辦法求出三角形三邊的長,則AB=__________;

2)如圖2,已知直角三角形紙片DEF,DEF=90°EF=2DE,求出DF的長;

3)在(2)的條件下,若橫格紙上過點E的橫線與DF相交于點G,直接寫出EG的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC,BD相交于點O,AC=12,BD=16,E為AD中點,點P在x軸上移動.若POE為等腰三角形,請寫出所有符合要求的點P的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC=90°,E是AB上一點,且DE⊥CE.若AD=1,BC=2,CD=3,則CE與DE的數(shù)量關(guān)系正確的是(

A.CE=DE B.CE=DE C.CE=3DE D.CE=2DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖ABC三個頂點的坐標(biāo)分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度.

(1)畫出ABC向上平移6個單位得到的A1B1C1;

(2)以點C為位似中心,在網(wǎng)格中畫出A2B2C2,使A2B2C2ABC位似,且A2B2C2ABC的位似比為2:1,并直接寫出點A2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,B30°OBC上一點,以點O為圓心,OB長為半徑作圓,恰好經(jīng)過點A,并與BC交于點D

1)求證:CA是⊙O的切線.

2)若AB2,求圖中陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,港口B位于港口A的南偏東方向,燈塔C恰好在AB的中點處,一艘海輪位于港口A的正南方向,港口B的正西方向的D處,它沿正北方向航行km,到達(dá)E處,測得燈塔C在北偏東方向上這時,E處距離港口A有多遠(yuǎn)?(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=BD,點E、F分別在BC、CD上,且BE=CF,連接BF、DE交于點M,延長ED到H使DH=BM,連接AM,AH,則以下四個結(jié)論:

①△BDF≌△DCE;②∠BMD=120°;③△AMH是等邊三角形;④S四邊形ABCD= AM2

其中正確結(jié)論的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案