【題目】如圖:求作一點P,使PM=PN,并且使點P到∠AOB的兩邊的距離相等.
【答案】解:如圖,點P即為所求.
①作∠AOB 的平分線OC;
②連結MN,并作MN 的垂直平分線EF,交OC于P,連結PM、PN,
則P點即為所求.
【解析】(1)作∠AOB 的平分線OC;(2)連結MN,并作MN 的垂直平分線EF,交OC于P,連結PM、PN,則P點即為所求.
【考點精析】認真審題,首先需要了解角平分線的性質定理(定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上),還要掌握線段垂直平分線的性質(垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質定理:線段垂直平分線上的點和這條線段兩個端點的距離相等)的相關知識才是答題的關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】下列調查的樣本具有代表性的是( )
A. 了解全校同學喜歡課程情況,對某班男生進行調查
B. 了解某小區(qū)居民的防火意識,從每幢居民隨機抽若干人進行調查
C. 了解商場的平均日營業(yè)額,選在周末進行調查
D. 了解杭州城區(qū)空氣質量,在江干區(qū)設點調查
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AC=BC,點D在BC上,作∠ADF=∠B,DF交外角∠ACE的平分線CF于點F.
(1)求證:CF∥AB;
(2)若∠CAD=20°,求∠CFD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校積極開展“陽光體育”活動,共開設了跳繩、足球、籃球、跑步四種運動項目,為了解學生最喜愛哪一種項目,隨機抽取了部分學生進行調查,并繪制如下所示的不完整的條形圖和扇形圖.
(1)本次抽樣調查抽取了多少名學生?并補全條形統(tǒng)計圖;
(2)求扇形統(tǒng)計圖中籃球部分對應的圓心角□的度數(shù);
(3)該校共有1200名學生,請估計全校最喜愛籃球項目的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,已知點A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的邊AC上任意一點,△ABC經(jīng)過平移后得到△A1B1C1 , 點P的對應點為P1(a+6,b﹣2).
(1)直接寫出點C1的坐標;
(2)在圖中畫出△A1B1C1;
(3)求△AOA1的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是
A.有一組鄰邊相等的四邊形是菱形B.四條邊都相等的四邊形是菱形
C.兩條對角線相等的矩形是正方形D.對角線相等的四邊形是平行四邊形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com