【題目】如圖,在正方形ABCD內有一點P滿足AP=AB,PB=PC,連接AC、PD.
求證:
(1)△APB≌△DPC;
(2)∠BAP=2∠PAC.

【答案】
(1))解:∵四邊形ABCD是正方形,∴∠ABC=∠DCB=90°.

∵PB=PC,∴∠PBC=∠PCB.

∴∠ABC﹣∠PBC=∠DCB﹣∠PCB,即∠ABP=∠DCP.

又∵AB=DC,PB=PC,

∴△APB≌△DPC.


(2))解:證明:∵四邊形ABCD是正方形,

∴∠BAC=∠DAC=45°.

∵△APB≌△DPC,∴AP=DP.

又∵AP=AB=AD,∴DP=AP=AD.

∴△APD是等邊三角形.

∴∠DAP=60°.

∴∠PAC=∠DAP﹣∠DAC=15°.

∴∠BAP=∠BAC﹣∠PAC=30°.

∴∠BAP=2∠PAC.


【解析】(1)AP=AB,PB=PC,∴∠ABC﹣∠PBC=∠DCB﹣∠PCB,即∠ABP=∠DCP,因此可證得兩三角形全等.(2)有(1)∠CAD=45°,△PAD為等邊三角形,可求得∠BAP=30°∠PAC=∠PAD﹣∠CAD=15°,因此可證的結論.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】2018年全國兩會于35日至20日在北京召開,為了了解市民獲取兩會新聞的最主要途徑,記者小李開展了一次抽樣調查,根據(jù)調查結果繪制了如圖所示尚不完整的統(tǒng)計圖.根據(jù)圖中信息解答下列問題:

(1)這次接受調查的市民總人數(shù)是   ;

(2)扇形統(tǒng)計圖中,電視所對應的圓心角的度數(shù)是   ;

(3)請補全條形統(tǒng)計圖;

(4)若該市約有700萬人,請你估計其中將電腦上網和手機上網作為獲取新聞的最主要途徑的總人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了了解本校學生采用何種方式上網查找所需要的學習資源,隨機抽取部分學生了解情況,并將統(tǒng)計結果繪制成頻數(shù)分布表及頻數(shù)分布直方圖. 上網查找學習資源方式頻數(shù)分布表

查找方式

頻數(shù)

頻率

搜索引擎

16

32%

專題網站

15

a

在線網校

4

8%

試題題庫

10

20%

其他

b

10%


(1)頻數(shù)分布表中a,b的值:a=;b=;
(2)補全頻數(shù)分布直方圖;
(3)若全校有1000名學生,估計該校利用搜索引擎上網查找學習資源的學生有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個盒子里有完全相同的三個小球,球上分別標有數(shù)字﹣2,1,4.隨機摸出一個小球(不放回),其數(shù)字為p,再隨機摸出另一個小球其數(shù)字記為q,則滿足關于x的方程x2+px+q=0有實數(shù)根的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖的坐標系中,畫出函數(shù)y=2y=2x+6的圖象,并結合圖象求:

(1)方程2x+6=0的解;

(2)不等式2x+6>2的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)軸上,點A,O,B分別表示-16,0,14,點P,Q分別從點A,B同時開始沿數(shù)軸正方向運動,點P的速度是每秒3個單位,點Q的速度是每秒1個單位,運動時間為t秒.若點P,Q,O三點在運動過程中,其中一點恰好是另外兩點為端點構成的線段的三等分點時,則運動時間為_秒.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,正方形ABCD中,點A,B的坐標分別為(0,10),(8,4),點C在第一象限.動點P在正方形ABCD的邊上,從點A出發(fā)沿A→B→C→D→A勻速運動,同時動點Q以相同的速度在x軸正半軸上運動,當點P到達A點時,兩點同時停止運動,設運動的時間為t秒.

(1)當P點在邊AB上運動時點Q的橫坐標x(長度單位)關于運動時間t(秒)的函數(shù)圖象如圖②所示,請寫出點Q開始運動時的坐標及點P運動速度;

(2)求正方形邊長及頂點C的坐標;
(3)在(1)中,設△OPQ的面積為S,求S與t的函數(shù)關系式并寫出自變量的取值范圍.
(4)如果點P、Q保持原速度不變,當點P沿A→B→C→D勻速運動時,OP與PQ能否相等?若能,寫出所有符合條件的t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ACB中,∠C=90°,AC=30cm,BC=25cm,動點P從點C出發(fā),沿CA方向運動,速度是2cm/s,動點Q從點B出發(fā),沿BC方向運動,速度是1cm/s.

(1)幾秒后P,Q兩點相距25cm?
(2)幾秒后△PCQ與△ABC相似?
(3)設△CPQ的面積為S1 , △ABC的面積為S2 , 在運動過程中是否存在某一時刻t,使得S1:S2=2:5?若存在,求出t的值;若不存在,則說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1) 如圖1,在正方形ABCD中,點E,F分別在邊BC,CD上,AE,BF交于點O,AOF=90°.求證:BE=CF.

(2) 如圖2,在正方形ABCD中,點E,H,F,G分別在邊AB,BC,CD,DA上,EF,GH交于點O,FOH=90°, EF=4.求GH的長.

(3) 已知點E,H,F,G分別在矩形ABCD的邊AB,BC,CD,DA上,EF,GH交于點O,FOH=90°,EF=4. 直接寫出下列兩題的答案:

如圖3,矩形ABCD由2個全等的正方形組成,求GH的長;

如圖4,矩形ABCD由n個全等的正方形組成,求GH的長(用n的代數(shù)式表示).

查看答案和解析>>

同步練習冊答案