【題目】負3與2的和是( )
A.5
B.﹣5
C.1
D.﹣1
科目:初中數學 來源: 題型:
【題目】解答
(1)如圖1,小明和小亮在研究一個數學問題:已知AB∥CD,AB和CD都不經過點P,探索∠P與∠A,∠C的數量關系.
小明是這樣證明的:過點P作PQ∥AB
∴∠APQ=∠A()
∵PQ∥AB,AB∥CD.
∴PQ∥CD()
∴∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
小亮是這樣證明的:過點作PQ∥AB∥CD.
∴∠APQ=∠A,∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
請在上面證明過程的過程的橫線上,填寫依據;兩人的證明過程中,完全正確的是 .
(2)應用:
在圖2中,若∠A=120°,∠C=140°,則∠APC的度數為;
(3)拓展:
在圖3中,探索∠APC與∠A,∠C的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求證:AD平分∠BAC.
下面是部分推理過程,請你將其補充完整:
∵AD⊥BC于D,EG⊥BC于G (已知)
∴∠ADC=∠EGC=90°
∴AD∥EG .
∴∠1=∠2 .
=∠3(兩直線平行,同位角相等)
又∵∠E=∠1(已知)
∴∠2=∠3 .
∴AD平分∠BAC .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】關于方程x2+2x﹣4=0的根的情況,下列結論錯誤的是( )
A. 有兩個不相等的實數根B. 兩實數根的和為﹣2
C. 沒有實數根D. 兩實數根的積為﹣4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在我們認識的多邊形中,有很多軸對稱圖形.有些多邊形,邊數不同對稱軸的條數也不同;有些多邊形,邊數相同但卻有不同數目的對稱軸.回答下列問題:
(1)非等邊的等腰三角形有條對稱軸,非正方形的長方形有條對稱軸,等邊三角形有條對稱軸;
(2)觀察下列一組凸多邊形(實線畫出),它們的共同點是只有1條對稱軸,其中圖1﹣2和圖1﹣3都可以看作由圖1﹣1修改得到的,仿照類似的修改方式,請你在圖1﹣4和圖1﹣5中,分別修改圖1﹣2和圖1﹣3,得到一個只有1條對稱軸的凸五邊形,并用實線畫出所得的凸五邊形;
(3)小明希望構造出一個恰好有2條對稱軸的凸六邊形,于是他選擇修改長方形,圖2中是他沒有完成的圖形,請用實線幫他補完整個圖形;
(4)請你畫一個恰好有3條對稱軸的凸六邊形,并用虛線標出對稱軸.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】線段EF是由線段PQ平移得到的,點P(﹣1,4)的對應點為E(4,7),則點Q(﹣3,1)的對應點F的坐標為()
A.(﹣8,﹣2)
B.(﹣2,﹣2)
C.(2,4)
D.(﹣6,﹣1)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,AB∥CD,∠A=∠D,試說明 AC∥DE 成立的理由.
(下面是彬彬同學進行的推理,請你將彬彬同學的推理過程補充完整.)
解:∵AB∥CD (已知)
∴∠A=(兩直線平行,內錯角相等)
又∵∠A=∠D()
∴∠=∠(等量代換)
∴AC∥DE ()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com