【題目】已知拋物線y=-x24x軸于AB兩點(diǎn),頂點(diǎn)是C

(1)ABC的面積;

(2)若點(diǎn)P在拋物線y=-x24上, SPAB SABC,求點(diǎn)P的坐標(biāo)。

【答案】18;(2)點(diǎn)P的坐標(biāo)為:(,2),(-,2),(-2),(-,-2).

【解析】

1)根據(jù)拋物線的性質(zhì)得到A-2,0),B2,0),C04),所以ABC是底邊為4,高為4的等腰三角形,利用三角形的面積公式可以求出三角形的面積.

2)根據(jù)PAB的面積是ABC的面積的一半,得到點(diǎn)P的縱坐標(biāo)為±2,然后代入拋物線可以求出點(diǎn)P的橫坐標(biāo),確定點(diǎn)P的坐標(biāo).

1A-2,0),B2,0),C0,4).

SABC=×4×4=8

所以ABC的面積是8

2)∵SPAB=SABC

∴點(diǎn)P的縱坐標(biāo)為±2,

當(dāng)y=2時(shí),代入拋物線有:2=-x2+4,得:x=±

當(dāng)y=-2時(shí),代入拋物線有:-2=-x2+4,得:x=±

所以點(diǎn)P的坐標(biāo)為:(,2),(-,2),(-2),(--2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B、C、D為矩形的四個(gè)頂點(diǎn)AB=16cm,AD=6cm,動點(diǎn)P、Q分別從點(diǎn)AC同時(shí)出發(fā),點(diǎn)P3cm/s的速度向點(diǎn)B移動,一直到達(dá)B為止,點(diǎn)Q2 cm/s的速度向D移動

(1)P、Q兩點(diǎn)從出發(fā)開始到幾秒?四邊形PBCQ的面積為33cm2

(2)P、Q兩點(diǎn)從出發(fā)開始到幾秒時(shí)?點(diǎn)P和點(diǎn)Q的距離是10cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2014年巴西世界杯足球賽前夕,某體育用品店購進(jìn)一批單價(jià)為40元的球服,如果按單價(jià)60元銷售,那么一個(gè)月內(nèi)可售出240,根據(jù)銷售經(jīng)驗(yàn),提高銷售單價(jià)會導(dǎo)致銷售量的減少,即銷售單價(jià)每提高5,銷售量相應(yīng)減少20,設(shè)銷售單價(jià)為x(x60)元,銷售量為y.

(1)求出yx的函數(shù)關(guān)系式;

(2)當(dāng)銷售單價(jià)為多少元時(shí),且銷售額為14000?

(3)當(dāng)銷售單價(jià)為多少元時(shí),才能在一個(gè)月內(nèi)獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)yax2+bx+ca≠0)的圖象如圖,給出下列4個(gè)結(jié)論:①abc0 b24ac; 4a+2b+c0;④2a+b0.其中正確的有( 。﹤(gè).

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對于點(diǎn)Px,y),如果點(diǎn)Qx,y)的縱坐標(biāo)滿足y,那么稱點(diǎn)Q為點(diǎn)P關(guān)聯(lián)點(diǎn)

1)請直接寫出點(diǎn)(3,5)的關(guān)聯(lián)點(diǎn)的坐標(biāo)   ;

2)如果點(diǎn)P在函數(shù)yx2的圖象上,其關(guān)聯(lián)點(diǎn)Q與點(diǎn)P重合,求點(diǎn)P的坐標(biāo);

3)如果點(diǎn)Mm,n)的關(guān)聯(lián)點(diǎn)N在函數(shù)y2x2的圖象上,當(dāng)0≤m≤2時(shí),求線段MN的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,矩形ABCD的對角線AC的垂直平分線EFADAC、BC分別交于點(diǎn)E、O、F

1)求證:四邊形AFCE是菱形;

2)若AB=5BC=12,EF=6,求菱形AFCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的頂點(diǎn)P的橫坐標(biāo)為,且與y軸交于點(diǎn)C0,-4).

1)求b,c的值;

2)直線y=m(m>0)與該拋物線的交點(diǎn)為M,N(點(diǎn)M在點(diǎn)N的左側(cè))點(diǎn)M關(guān)于y軸的對稱點(diǎn)為點(diǎn)M,點(diǎn)H的坐標(biāo)為(3,0).若四邊形ONMH的面積為18.求點(diǎn)HOM的距離;

3)是否在對稱軸的同側(cè)存在實(shí)數(shù)m、n(m<n),當(dāng) 時(shí),y的取值范圍為 ?若存在,求出m,n的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Rt中,AB=BC=4,,將一直角三角板的直角頂點(diǎn)放在斜邊AC的中點(diǎn)P處,將三角板繞點(diǎn)P旋轉(zhuǎn),三角板的兩直角邊分別與邊AB、BC或其延長線上交于D、E兩點(diǎn)(假設(shè)三角板的兩直角邊足夠長),如圖(1)、圖(2)表示三角板旋轉(zhuǎn)過程中的兩種情形.

1)直角三角板繞點(diǎn)P旋轉(zhuǎn)過程中,當(dāng)______時(shí),是等腰三角形;

2)直角三角板繞點(diǎn)P旋轉(zhuǎn)到圖(1)的情形時(shí),求證:PD=PE

3)如圖(3),若將直角三角板的頂點(diǎn)放在斜邊AC的點(diǎn)M處,設(shè)(、為正數(shù)),求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售面向中考生的計(jì)數(shù)跳繩,每根成本為20元,銷售的前40天內(nèi)的日銷售量m(根)與時(shí)間t(天)的關(guān)系如表.

時(shí)間t(天)

1

3

8

10

26

日銷售量m(件)

51

49

44

42

26

40天每天的價(jià)格y(元/件)與時(shí)間t(天)的函數(shù)關(guān)系式為:y=t+251≤t≤40t為整數(shù));

1)認(rèn)真分析表中的數(shù)據(jù),用所學(xué)過的知識確定m(件)與t(天)之間是滿足一次函數(shù)的關(guān)系還是二次函數(shù)的關(guān)系?并利用這些數(shù)據(jù)求m(件)與t(天)之間得函數(shù)關(guān)系式;

2)請計(jì)算40天中哪一天的日銷售利潤最大,最大日銷售利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案