【題目】已知:如圖,在菱形ABCD中,AB=AC,點(diǎn)E、F分別在邊AB、BC上,且AE=BF,CE與AF相交于點(diǎn)G.
(1)求證:∠FGC=∠B;
(2)延長(zhǎng)CE與DA的延長(zhǎng)線交于點(diǎn)H,求證:BECH=AFAC.
【答案】(1)見解析;(2)見解析.
【解析】
(1)先利用菱形的性質(zhì)判斷△ABC為等邊三角形得到∠B=∠BAC=60°,再證明△ABF≌△CAE得到∠BAF=∠ACE,然后利用角度代換可得到結(jié)論;
(2)如圖,先證明△BCE∽△DHC得到,然后利用等線段代換可得到結(jié)論.
(1)∵四邊形ABCD為菱形,
∴AB=BC,
而AB=AC,
∴AB=BC=AC,
∴△ABC為等邊三角形,
∴∠B=∠BAC=60°,
在△ABF和△CAE中
,
∴△ABF≌△CAE(SAS),
∴∠BAF=∠ACE,
∵∠FGC=∠GAC+∠ACG=∠GAC+∠BAF=∠BAC=60°,
∴∠FGC=∠B;
(2)如圖,
∵四邊形ABCD為菱形,
∴∠B=∠D,AD∥BC,
∴∠BCE=∠H,
∴△BCE∽△DHC,
,
∵△ABF≌△CAE,
∴CE=AF
∵CA=CB=CD,
∴,
∴BECH=AFAC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線 與雙曲線 相交于A、B兩點(diǎn),且A點(diǎn)橫坐標(biāo)為2,C是第一象限內(nèi)雙曲線上一點(diǎn),連接CA并延長(zhǎng)交y軸于點(diǎn)D,連接BD,BC.
(1)k的值是________;
(2)若AD=AC,則△BCD的面積是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若一個(gè)三角形一條邊上的高長(zhǎng)為這條邊長(zhǎng)的一半,則稱該三角形為這條邊上的“半高”三角形,這條高稱為這條邊上的“半高”,如圖,△ABC是BC邊上的“半高”三角形.點(diǎn)P在邊AB上,PQ∥BC交AC于點(diǎn)Q,PM⊥BC于點(diǎn)M,QN⊥BC于點(diǎn)N,連接MQ.
(1)請(qǐng)證明△APQ為PQ邊上的“半高”三角形.
(2)請(qǐng)?zhí)骄?/span>BM,PM,CN之間的等量關(guān)系,并說(shuō)明理由;
(3)若△ABC的面積等于16,求MQ的最小值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=k1x+b的圖象與反比例函數(shù)y= (x<0)的圖象相交于點(diǎn)A(-1,2)、點(diǎn)B(-4,n).
(1)求此一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)求△AOB的面積;
(3)在x軸上存在一點(diǎn)P,使△PAB的周長(zhǎng)最小,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,AB=4,BC=6,點(diǎn)O是邊BC上一點(diǎn),以O為圓心,OC為半徑的⊙O,與邊AD只有一個(gè)公共點(diǎn),則OC的取值范圍是( )
A. 4<OC≤B. 4≤OC≤C. 4<OCD. 4≤OC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在圓心角為120°的扇形OAB中,半徑OA=2,C為的中點(diǎn),D為OA上任意一點(diǎn)(不與點(diǎn)O、A重合),則圖中陰影部分的面積為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形ABCD中,AB=6,BC=8,點(diǎn)E是邊CD上的點(diǎn),且CE=4,過(guò)點(diǎn)E作CD的垂線,并在垂線上截取EF=3,連接CF.將△CEF繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為a.
(1)問(wèn)題發(fā)現(xiàn)
當(dāng)a=0°時(shí),AF= ,BE= ,= ;
(2)拓展探究
試判斷:當(dāng)0°≤a°<360°時(shí),的大小有無(wú)變化?請(qǐng)僅就圖2的情況給出證明.
(3)問(wèn)題解決
當(dāng)△CEF旋轉(zhuǎn)至A,E,F三點(diǎn)共線時(shí),直接寫出線段BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】被歷代數(shù)學(xué)家尊為“算經(jīng)之首”的《九章算術(shù)》是中國(guó)古代算法的扛鼎之作.《九章算術(shù)》中記載:“今有五雀、六燕,集稱之衡,雀俱重,燕俱輕.一雀一燕交而處,衡適平.并燕、雀重一斤.問(wèn)燕、雀一枚各重幾何?”譯文:“今有5只雀、6只燕,分別聚集而且用衡器稱之,聚在一起的雀重,燕輕.將一只雀、一只燕交換位置而放,重量相等.5只雀、6只燕重量為1斤.問(wèn)雀、燕毎只各重多少斤?”設(shè)每只雀重x斤,每只燕重y斤,可列方程組為( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+4與x軸交于點(diǎn)A(﹣1,0)、B(3,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)如圖1,D為拋物線對(duì)稱軸上一動(dòng)點(diǎn),求D運(yùn)動(dòng)到什么位置時(shí)△DAC的周長(zhǎng)最。
(3)如圖2,點(diǎn)E在第一象限拋物線上,AE與BC交于點(diǎn)F,若AF:FE=2:1,求E點(diǎn)坐標(biāo);
(4)點(diǎn)M、N同時(shí)從B點(diǎn)出發(fā),分別沿BA、BC方向運(yùn)動(dòng),它們的運(yùn)動(dòng)速度都是1個(gè)單位/秒,當(dāng)點(diǎn)M運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)N停止運(yùn)動(dòng),則當(dāng)點(diǎn)N停止運(yùn)動(dòng)后,在x軸上是否存在點(diǎn)P,使得△PBN是等腰三角形?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com