【題目】不等式2x3﹣x的解集是(  )

A. x3 B. x3 C. x1 D. x1

【答案】C

【解析】不等式2x>3﹣x移項(xiàng)得,

2x+x>3,

3x>3,

系數(shù)化1得;

x>1.

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C是線段AB的中點(diǎn),CD平分ACE,CE平分BCD,CD=CE;

(1)求證:ACD≌△BCE;

(2)D=50°,求B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將連續(xù)的偶數(shù)2,4,6,8…排列成如下的數(shù)表用十字框框出5個數(shù)(如圖)

(1)十字框框出5個數(shù)的和與框子正中間的數(shù)20有什么關(guān)系?

(2)若將十字框上下左右平移,但一定要框住數(shù)列中的5個數(shù),若設(shè)中間的數(shù)為a,用a的代數(shù)式表示十字框框住的5個數(shù)字之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個直角三角形的斜邊長15cm,一條直角邊比另一條直角邊長3cm.求兩條直角邊的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由幾個相同的邊長為1的小立方塊搭成的幾何體的俯視圖如圖所示.方格中的數(shù)字表示該位置的小立方塊的個數(shù).

1)請?jiān)谙旅娣礁窦堉蟹謩e畫出這個幾何體的正視圖和左視圖.

2)根據(jù)三視圖,請你求出這個組合幾何體的表面積(包括底面積).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知菱形ABCD中,對角線AC與BD交于點(diǎn)O,∠BAD=120°,AC=4,則該菱形的面積是(
A.16
B.16
C.8
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】采摘茶葉是茶農(nóng)一項(xiàng)很繁重的勞動,利用單人便攜式采茶機(jī)能大大提高生產(chǎn)效率.實(shí)踐證明,一臺采茶機(jī)每天可采茶60公斤,是人手工采摘的5倍,購買一臺采茶機(jī)需2400元.茶園雇人采摘茶葉,按每采摘1公斤茶葉m元的標(biāo)準(zhǔn)支付雇工工資,一個雇工手工采摘茶葉20天獲得的全部工錢正好購買一臺采茶機(jī).

1)求m的值;

2)有兩家茶葉種植戶王家和顧家均雇人采摘茶葉,王家雇用的人數(shù)是顧家的2倍.王家所雇的人中有的人自帶采茶機(jī)采摘 的人手工采摘,顧家所雇的人全部自帶采茶機(jī)采摘.某一天,王家付給雇工的工資總額比顧家付給雇工的工資總額少600元.問顧家當(dāng)天采摘了多少公斤茶葉?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知E,F(xiàn)分別為正方形ABCD的邊BC,CD上的點(diǎn),AF,DE相交于點(diǎn)G,當(dāng)E,F(xiàn)分別為邊BC,CD的中點(diǎn)時,有:①AF=DE;②AF⊥DE成立.
試探究下列問題:
(1)如圖1,若點(diǎn)E不是邊BC的中點(diǎn),F(xiàn)不是邊CD的中點(diǎn),且CE=DF,上述結(jié)論①,②是否仍然成立?(請直接回答“成立”或“不成立”),不需要證明)

(2)如圖2,若點(diǎn)E,F(xiàn)分別在CB的延長線和DC的延長線上,且CE=DF,此時,上述結(jié)論①,②是否仍然成立?若成立,請寫出證明過程,若不成立,請說明理由;

(3)如圖3,在(2)的基礎(chǔ)上,連接AE和EF,若點(diǎn)M,N,P,Q分別為AE,EF,F(xiàn)D,AD的中點(diǎn),請判斷四邊形MNPQ是“矩形、菱形、正方形”中的哪一種,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)采用隨機(jī)的方式對學(xué)生掌握安全知識的情況進(jìn)行測評,并按成績高低分成優(yōu)、良、中、差四個等級進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請根據(jù)有關(guān)信息解答:

(1)接受測評的學(xué)生共有________人,扇形統(tǒng)計(jì)圖中“優(yōu)”部分所對應(yīng)扇形的圓心角為________°,并補(bǔ)全條形統(tǒng)計(jì)圖;

(2)若該校共有學(xué)生1200人,請估計(jì)該校對安全知識達(dá)到“良”程度的人數(shù);

(3)測評成績前五名的學(xué)生恰好3個女生和2個男生,現(xiàn)從中隨機(jī)抽取2人參加市安全知識競賽,請用樹狀圖或列表法求出抽到1個男生和1個女生的概率.

查看答案和解析>>

同步練習(xí)冊答案