【題目】一輛快車從甲地開往乙地,一輛慢車從乙地開往甲地,兩車同時出發(fā),設慢車離乙地的距離為y1km),快車離乙地的距離為y2km),慢車行駛時間為xh),兩車之間的距離為Skm),y1,y2x的函數(shù)關系圖象如圖(1)所示,Sx的函數(shù)關系圖象如圖(2)所示:

1)圖中的a  ,b  

2)求S關于x的函數(shù)關系式.

3)甲、乙兩地間依次有E、F兩個加油站,相距200km,若慢車進入E站加油時,快車恰好進入F站加油.求E加油站到甲地的距離.

【答案】1a=6,b=;(2;(3450km300km

【解析】

(1)根據(jù)Sx之間的函數(shù)關系式可以得到當位于C點時,兩車之間的距離增加變緩,此時快車到站,指出此時a的值即可,求得a的值后求出兩車相遇時的時間即為b的值;

(2)根據(jù)函數(shù)的圖象可以得到A、BC、D的點的坐標,利用待定系數(shù)法求得函數(shù)的解析式即可.

(3)分兩車相遇前和兩車相遇后兩種情況討論,當相遇前令s=200代入直線AB解析式,當相遇后令s=200代入直線BC解析式即可求得x的值.

解:(1)Sx之間的函數(shù)的圖象可知:當位于C點時,兩車之間的距離增加變緩,

∴由此可以得到a=6,

∴快車每小時行駛100千米,慢車每小時行駛60千米,兩地之間的距離為600,

b=600÷(100+60)=

(2)∵從函數(shù)的圖象上可以得到A、B、C、D點的坐標分別為:(0,600)、(,0)、(6,360)、(10,600),

∴設線段AB所在直線解析式為:S=kx+b,

,

解得:k=160,b=600,

設線段BC所在的直線的解析式為:S=kx+b

解得:k=160,b=600,

設直線CD的解析式為:S=kx+b,

,

解得:k=60,b=0

;

(3)當兩車相遇前分別進入兩個不同的加油站,

此時:S=160x+600=200,

解得:x= ,

當兩車相遇后分別進入兩個不同的加油站,

此時:S=160x600=200,

解得:x=5,

∴當x=或5時,此時E加油站到甲地的距離為450km或300km.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則下列結(jié)論:4ac﹣b2<0;2a﹣b=0;a+b+c<0;點M(x1,y1)、N(x2,y2)在拋物線上,若x1<x2,則y1≤y2,其中正確結(jié)論的個數(shù)是(

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖Rt△ABC,BAC=90°,AB=AC在平面內(nèi)任取一點D,連結(jié)ADADAB),將線段AD繞點A逆時針旋轉(zhuǎn)90°,得到線段AE,連結(jié)DE,CE,BD

1)請根據(jù)題意補全圖1;

2)猜測BDCE的數(shù)量關系并證明

3)作射線BD,CE交于點PADE繞點A旋轉(zhuǎn),EAC=90°AB=2,AD=1,補全圖形,直接寫出PB的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知中,,點的中點,如果點在線段上以的速度由點向點運動,同時,點在線段上由點向點運動.

1)若點與點的運動速度相等,經(jīng)過1秒后,是否全等?請說明理由;

2)若點與點的運動速度不相等,當點的運動速度為多少時,能使全等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,三角形紙片ABC,AB=AC∠BAC=90°,點EAB中點.沿過點E的直線折疊,使點B與點A重合,折痕現(xiàn)交于點F.已知EF=cm BC的長是_______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x>0)的圖象交于A(m,6),B(3,n)兩點.

(1)求一次函數(shù)的解析式;

(2)根據(jù)圖象直接寫出kx+b-<0時x的取值范圍;

(3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,四邊形ABCD中,ADBC,∠B=90°AD=AB=4,BC=7,點EBC上,將CDE沿DE折疊,點C恰好落在AB邊上的點F處.

1)求線段DC的長度;

2)求FED的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知O的半徑為1,等腰直角三角形ABC的頂點B的坐標為(,0),CAB=90°, AC=AB,頂點A在O上運動.

(1)設點A的橫坐標為x,ABC的面積為S,求Sx之間的函數(shù)關系式,并求出S的最大值與最小值;(2)當直線ABO相切時,求AB所在直線對應的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+的圖象與反比例函數(shù)y=(k>0)的圖象交于A,B兩點,過A點作x軸的垂線,垂足為M,AOM面積為1.

(1)求反比例函數(shù)的解析式;

(2)在y軸上求一點P,使PA+PB的值最小,并求出其最小值和P點坐標.

查看答案和解析>>

同步練習冊答案