如圖,有一塊半圓形鋼板,直徑AB=20cm,計劃將此鋼板切割成下底為AB的等腰梯形,上底CD的端點在圓周上,且CD=10cm.則圖中陰影部分的面積   
【答案】分析:求圖中陰影部分的面積,可以連接OC,OD,從而求出扇形OCD及△OCD的面積,然后根據(jù)S陰影=S扇形-S△OCD即可得出答案.
解答:解:連接OC,OD,過點O作OE⊥CD于點E,

∵OE⊥CD,
∴CE=DE=5,
∴OE===5,
∵∠OED=90°,DE=OD,
∴∠DOE=30°,∠DOC=60°.
∴S扇形OCD==(cm2),
S△OCD=•OE•CD=25(cm2),
∴S陰影=S扇形OCD-S△OCD=(-25)cm2
∴陰影部分的面積為(-25)cm2
故答案為:(-25)cm2
點評:此題主要考查了扇形面積求法以及等腰梯形的性質(zhì)等知識,利用不規(guī)則圖形的面積可以轉(zhuǎn)化為一些規(guī)則圖形的面積的和或差的問題求解是解題關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,有一塊半圓形鋼板,直徑AB=20cm,計劃將此鋼板切割成下底為AB的等腰梯形,上底CD的端點在圓周上,且CD=10cm.
(1)求梯形ABCD面積;
(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南充模擬)如圖,有一塊半圓形鋼板,直徑AB=20cm,計劃將此鋼板切割成下底為AB的等腰梯形,上底CD的端點在圓周上,且CD=10cm.求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,有一塊半圓形鋼板,直徑AB=20cm,計劃將此鋼板切割成下底為AB的等腰梯形,上底CD的端點在圓周上,且CD=10cm.則圖中陰影部分的面積
50π
3
-25
3
)cm2
50π
3
-25
3
)cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,有一塊半圓形鋼板,直徑AB=20cm,計劃將此鋼板切割成下底為AB的等腰梯形,上底CD的端點在圓周上,且CD=10cm.求圖中陰影部分的面積.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年北京海淀區(qū)中考模擬數(shù)學(xué)卷 題型:解答題

如圖,有一塊半圓形鋼板,直徑AB=20cm,計劃將此鋼板切割成下底為AB的等腰梯形,上底CD的端點在圓周上,且CD=10cm.求圖中陰影部分的面積.

 

查看答案和解析>>

同步練習冊答案