【題目】如圖所示,在平面直角坐標(biāo)系中,⊙C經(jīng)過坐標(biāo)原點(diǎn)O,且與x軸,y軸分別相交于M(4,0),N(0,3)兩點(diǎn).已知拋物線開口向上,與⊙C交于N,H,P三點(diǎn),P為拋物線的頂點(diǎn),拋物線的對稱軸經(jīng)過點(diǎn)C且垂直x軸于點(diǎn)D.
(1)求線段CD的長及頂點(diǎn)P的坐標(biāo);
(2)求拋物線的函數(shù)表達(dá)式;
(3)設(shè)拋物線交x軸于A,B兩點(diǎn),在拋物線上是否存在點(diǎn)Q,使得S四邊形OPMN=8S△QAB , 且△QAB∽△OBN成立?若存在,請求出Q點(diǎn)的坐標(biāo);若不存在,請說明理由.
【答案】
(1)
解:如圖,連接OC,
∵M(jìn)(4,0),N(0,3),
∴OM=4,ON=3,
∴MN=5,
∴OC= MN= ,
∵CD為拋物線對稱軸,
∴OD=MD=2,
在Rt△OCD中,由勾股定理可得CD= = = ,
∴PD=PC﹣CD= ﹣ =1,
∴P(2,﹣1);
(2)
解:∵拋物線的頂點(diǎn)為P(2,﹣1),
∴設(shè)拋物線的函數(shù)表達(dá)式為y=a(x﹣2)2﹣1,
∵拋物線過N(0,3),
∴3=a(0﹣2)2﹣1,解得a=1,
∴拋物線的函數(shù)表達(dá)式為y=(x﹣2)2﹣1,即y=x2﹣4x+3
(3)
解:在y=x2﹣4x+3中,令y=0可得0=x2﹣4x+3,解得x=1或x=3,
∴A(1,0),B(3,0),
∴AB=3﹣1=2,
∵ON=3,OM=4,PD=1,
∴S四邊形OPMN=S△OMP+S△OMN= OMPD+ OMON= ×4×1+ ×4×3=8=8S△QAB,
∴S△QAB=1,
設(shè)Q點(diǎn)縱坐標(biāo)為y,則 ×2×|y|=1,解得y=1或y=﹣1,
當(dāng)y=1時,則△QAB為鈍角三角形,而△OBN為直角三角形,不合題意,舍去,
當(dāng)y=﹣1時,可知P點(diǎn)即為所求的Q點(diǎn),
∵D為AB的中點(diǎn),
∴AD=BD=QD,
∴△QAB為等腰直角三角形,
∵ON=OB=3,
∴△OBN為等腰直角三角形,
∴△QAB∽△OBN,
綜上可知存在滿足條件的點(diǎn)Q,其坐標(biāo)為(2,﹣1)
【解析】(1)連接OC,由勾股定理可求得MN的長,則可求得OC的長,由垂徑定理可求得OD的長,在Rt△OCD中,可求得CD的長,則可求得PD的長,可求得P點(diǎn)坐標(biāo);(2)可設(shè)拋物線的解析式為頂點(diǎn)式,再把N點(diǎn)坐標(biāo)代入可求得拋物線解析式;(3)由拋物線解析式可求得A、B的坐標(biāo),由S四邊形OPMN=8S△QAB可求得點(diǎn)Q到x軸的距離,且點(diǎn)Q只能在x軸的下方,則可求得Q點(diǎn)的坐標(biāo),再證明△QAB∽△OBN即可.
【考點(diǎn)精析】掌握二次函數(shù)的性質(zhì)是解答本題的根本,需要知道增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為二次函數(shù)y=ax2+bx+c的圖象,在下列說法中:
①ac<0;
②方程ax2+bx+c=0的根是x1=﹣1,x2=3;
③a+b+c>0;
④當(dāng)x>1時,y隨著x的增大而增大.
正確的說法有 . (請寫出所有正確的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,AD=6,點(diǎn)E、F分別在邊CD、AB上.
(1)若DE=BF,求證:四邊形AFCE是平行四邊形;
(2)若四邊形AFCE是菱形,求菱形AFCE的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.圓內(nèi)接正六邊形的邊長與該圓的半徑相等
B.在平面直角坐標(biāo)系中,不同的坐標(biāo)可以表示同一點(diǎn)
C.一元二次方程ax2+bx+c=0(a≠0)一定有實(shí)數(shù)根
D.將△ABC繞A點(diǎn)按順時針方向旋轉(zhuǎn)60°得△ADE,則△ABC與△ADE不全等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算題
(1)計算:﹣(2﹣ )﹣(π﹣3.14)0+(1﹣cos30°)×( )﹣2;
(2)先化簡,再求值: ﹣ ÷ ,其中a= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,∠ABD、∠CDB的平分線BE、DF分別交邊AD、BC于點(diǎn)E、F.
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)∠ABE為多少度時,四邊形BEDF是菱形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,給出下列結(jié)論: ①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正確的個數(shù)有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著交通道路的不斷完善,帶動了旅游業(yè)的發(fā)展,某市旅游景區(qū)有A、B、C、D、E等著名景點(diǎn),該市旅游部門統(tǒng)計繪制出2017年“五一”長假期間旅游情況統(tǒng)計圖,根據(jù)以下信息解答下列問題:
(1)2017年“五一”期間,該市周邊景點(diǎn)共接待游客萬人,扇形統(tǒng)計圖中A景點(diǎn)所對應(yīng)的圓心角的度數(shù)是 , 并補(bǔ)全條形統(tǒng)計圖.
(2)根據(jù)近幾年到該市旅游人數(shù)增長趨勢,預(yù)計2018年“五一”節(jié)將有80萬游客選擇該市旅游,請估計有多少萬人會選擇去E景點(diǎn)旅游?
(3)甲、乙兩個旅行團(tuán)在A、B、D三個景點(diǎn)中,同時選擇去同一景點(diǎn)的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所用等可能的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,將三角形CDE繞點(diǎn)C逆時針旋轉(zhuǎn)75°,點(diǎn)E的對應(yīng)點(diǎn)N恰好落在OA上,則 的值為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com