【題目】如圖,在△ABC中,∠C=90°,∠BAC=30°,AB=8,AD平分∠BAC,點PQ分別是AB、AD邊上的動點,則PQ+BQ的最小值是
A. 4 B. 5 C. 6 D. 7
【答案】A
【解析】
如圖,作點P關(guān)于直線AD的對稱點P′,連接QP′,由△AQP≌△AQP′,得PQ=QP′,欲求PQ+BQ的最小值,只要求出BQ+QP′的最小值,即當(dāng)BP′⊥AC時,BQ+QP′的值最小,此時Q與D重合,P′與C重合,最小值為BC的長.
如圖,作點P關(guān)于直線AD的對稱點P′,連接QP′,
在△AQP和△AQP′中,
,
∴△AQP≌△AQP′,
∴PQ=QP′
∴欲求PQ+BQ的最小值,只要求出BQ+QP′的最小值,
∴當(dāng)BP′⊥AC時,BQ+QP′的值最小,此時Q與D重合,P′與C重合,最小值為BC的長。
在Rt△ABC中,∵∠C=90°,AB=8,∠BAC=30°,
∴BC=AB=4,
∴PQ+BQ的最小值是4,
故選A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,點E是AD上的一點,有AE=4,BE的垂直平分線交BC的延長線于點F,連結(jié)EF交CD于點G.若G是CD的中點,則BC的長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)每天中午總是在規(guī)定時間打開學(xué)校大門,七年級同學(xué)小明每天中午同一時間從家騎自行車到學(xué)校,星期一中午他以每小時15千米的速度到校,結(jié)果在校門口等了6分鐘才開門,星期二中午他以每小時9千米的速度到校,結(jié)果校門已開了6分鐘,星期三中午小明想準(zhǔn)時到達(dá)學(xué)校門口,那么小明騎自行車的速度應(yīng)該為每小時多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,AB=10,BC=6,
(1)計算AC的長度;
(2)計算AB邊上的中線CD的長度.
(3)計算AB邊上的高CE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=4,BC=5,∠ABC=60°,平行四邊形ABCD的對角線AC、BD交于點O,過點O作OE⊥AD,則OE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點B坐標(biāo)為(8,4),將矩形OABC繞點O逆時針旋轉(zhuǎn),使點B落在y軸上的點B′處,得到矩形OA′B′C′,OA′與BC相交于點D,則經(jīng)過點D的反比例函數(shù)解析式是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com