【題目】已知一次函數(shù)y=kx+b與反比例函數(shù)y= 交于A(﹣1,2),B(2,n),與y軸交于C點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)解析式;
(2)如圖1,若將y=kx+b向下平移,使平移后的直線與y軸交于F點(diǎn),與雙曲線交于D,E兩點(diǎn),若S△ABD=3,
求D,E的坐標(biāo).
(3)如圖2,P為直線y=2上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PQ∥y軸交直線AB于Q,交雙曲線于R,若QR=2QP,求P點(diǎn)坐標(biāo).
【答案】
(1)解:點(diǎn)A(﹣1,2)在反比例函數(shù)y= 的圖象上,
∴m=(﹣1)×2=﹣2,
∴反比例函數(shù)的表達(dá)式為y=﹣ ,
∵點(diǎn)B(2,n)也在反比例函數(shù)的y=﹣ 圖象上,
∴n=﹣1,
即B(2,﹣1)
把點(diǎn)A(﹣1,2),點(diǎn)B(2,﹣1)代入一次函數(shù)y=kx+b中,得 ,
解得:k=﹣1,b=1,
∴一次函數(shù)的表達(dá)式為y=﹣x+1,
答:反比例函數(shù)的表達(dá)式是y=﹣ ,一次函數(shù)的表達(dá)式是y=﹣x+1;
(2)解:如圖1,
連接AF,BF,
∵DE∥AB,
∴S△ABF=S△ABD=3(同底等高的兩三角形面積相等),
∵直線AB的解析式為y=﹣x+1,
∴C(0,1),
設(shè)點(diǎn)F(0,m),
∴AF=1﹣m,
∴S△ABF=S△ACF+S△BCF= CF×|xA|+ CF×|xB|= (1﹣m)×(1+2)=3,
∴m=﹣1,
∴F(0,﹣1),
∵直線DE的解析式為y=﹣x+1,且DE∥AB,
∴直線DE的解析式為y=﹣x﹣1①.
∵反比例函數(shù)的表達(dá)式為y=﹣ ②,
聯(lián)立①②解得, 或
∴D(﹣2,1),E(1,﹣2);
(3)解:如圖2
由(1)知,直線AB的解析式為y=﹣x﹣1,雙曲線的解析式為y=﹣ ,
設(shè)點(diǎn)P(p,2),
∴Q(p,﹣p﹣1),R(p,﹣ ),
PQ=|2+p+1|,QR=|﹣p﹣1+ |,
∵QR=2QP,
∴|﹣p﹣1+ |=2|2+p+1|,
解得,p= 或p= ,
∴P( ,2)或( ,2)或( ,2)或( ,2).
【解析】(1)把A的坐標(biāo)代入反比例函數(shù)的解析式可求得m的值,從而可得到反比例函數(shù)的解析式;把點(diǎn)A和點(diǎn)B的坐標(biāo)代入一次函數(shù)的解析式可求得一次函數(shù)的解析式;
(2)依據(jù)同底等高的兩個(gè)三角形的面積相等可得到S△ABF=S△ABD=3,再利用三角形的面積公式可求得點(diǎn)F的坐標(biāo),即可得出直線DE的解析式,即可求出交點(diǎn)坐標(biāo);
(3)設(shè)點(diǎn)P(p,2),則Q(p,﹣p﹣1),R(p,﹣ ),然后可表示出PQ與QR的長度,最后依據(jù)QR=2QP,可得到關(guān)于p的方程,從而可求得p的值,從而可得到點(diǎn)P的坐標(biāo).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列哪個(gè)條件不能判定△ABM≌△CDN( )
A.AM=CNB.AB=CD C.AM∥CN D.∠M=∠N
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:我們把對非負(fù)實(shí)數(shù)“四舍五入”到個(gè)位的值記為,
即當(dāng)為非負(fù)整數(shù)時(shí),若,則.
例如:,,….
請解決下列問題:
(1)______;
(2)若,則實(shí)數(shù)的取值范圍是_________;
(3)①;
②當(dāng)為非負(fù)整數(shù)時(shí),;
③滿足的非負(fù)實(shí)數(shù)只有兩個(gè).其中結(jié)論正確的是_____(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是某同學(xué)對多項(xiàng)式(x2-4x+2)(x2-4x+6)+4進(jìn)行因式分解的過程.
解:設(shè)x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16 (第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
回答下列問題:
(1)該同學(xué)第二步到第三步運(yùn)用了因式分解的_______.
A.提取公因式 |
B.平方差公式 |
C.兩數(shù)和的完全平方公式 |
D.兩數(shù)差的完全平方公式 |
(2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)若不徹底,請直接寫出因式分解的最后結(jié)果_________ .
(3)請你模仿以上方法嘗試對多項(xiàng)式(x2-2x)(x2-2x+2)+1進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某學(xué)校七年級4個(gè)班共180人的體質(zhì)健康情況,從各班分別抽取同樣數(shù)量的男生和女生組成一個(gè)樣本,如圖是根據(jù)樣本繪制的條形圖和扇形圖.
(1)本次抽查的樣本容量是 .
(2)請補(bǔ)全條形圖和扇形圖中的百分?jǐn)?shù);
(3)請你估計(jì)全校七年級共有多少人優(yōu)秀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一張如圖1的長方形鐵皮,四個(gè)角都剪去邊長為的正方形,再四周折起,做成一個(gè)有底無蓋的鐵盒如圖2,鐵盒底面長方形的長是,寬是這個(gè)無蓋鐵盒各個(gè)面的面積之和稱為鐵盒的全面積.
(1)圖1中原長方形鐵皮的面積為_;(用的代數(shù)式表示)
(2)若要在鐵盒的各個(gè)外表面漆上某種油漆,每元錢可涂的面積為,則涂完這個(gè)鐵盒需要多少錢?(用的代數(shù)式表示)
(3)是否存在一個(gè)最大正整數(shù),使得鐵盒的全面積是底面積的正整數(shù)倍?若存在,請直接寫出這個(gè),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2013年四川南充3分)如圖,把矩形ABCD沿EF翻折,點(diǎn)B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是【 】
A.12 B. 24 C. 12 D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)D是等邊△ABC的邊BC上一點(diǎn),以AD為邊向右作等邊△ADF,DF與AC交于點(diǎn)N.
(1)如圖①,當(dāng)AD⊥BC時(shí),請說明DF⊥AC的理由;
(2)如圖②,當(dāng)點(diǎn)D在BC上移動(dòng)時(shí),以AD為邊再向左作等邊△ADE,DE與AB交于點(diǎn)M,試問線段AM和AN有什么數(shù)量關(guān)系?請說明你的理由;
(3)在(2)的基礎(chǔ)上,若等邊△ABC的邊長為2,直接寫出DM+DN的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】網(wǎng)絡(luò)商店(簡稱網(wǎng)店)是近年來迅速興起的一種電子商務(wù)形式,小明的網(wǎng)店銷售紅棗、小米兩種商品的相關(guān)信息如下表:
商品 | 紅棗 | 小米 |
規(guī)格 | 1kg/袋 | 2kg/袋 |
成本(元/袋) | 40 | 38 |
售價(jià)(元/袋) | 60 | 54 |
根據(jù)上表提供的信息,解答下列問題
(1)已知今年前四個(gè)月,小明的網(wǎng)店銷售上表中規(guī)格的紅棗和小米共2000kg,獲得利潤2.8萬元,求這前四個(gè)月小明的網(wǎng)店銷售這種規(guī)格的紅棗和小米各多少袋?
(2)根據(jù)之前的銷售情況,估計(jì)今年5月到12月這后八個(gè)月,小明的網(wǎng)店還能銷售同規(guī)格的紅棗和小米共4000kg,其中,紅棗的銷售量不低于1200kg.假設(shè)這后八個(gè)月,銷售紅棗x(kg),銷售紅棗和小米獲得的總利潤為y(元),求出y與x之間的函數(shù)關(guān)系式,并求出這后八個(gè)月,小明的網(wǎng)店銷售這種規(guī)格的紅棗和小米至少獲得總利潤多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com