【題目】已知:如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線y=ax2+bx+3交y軸于點(diǎn)A,交x軸正半軸于點(diǎn)C(3,0),交x軸負(fù)半軸于點(diǎn)B(﹣1,0),∠ACB=45°.

(1)求此拋物線的解析式;
(2)點(diǎn)D為線段AC上一點(diǎn),且AD=2CD,過點(diǎn)D作DE∥y軸,交拋物線一點(diǎn)E,點(diǎn)P為x軸上方拋物線的一點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為t,△PDE的面積為s,求s與t之間的函數(shù)關(guān)系式,并直接寫出t的范圍;
(3)在(2)的條件下,過點(diǎn)P作PF∥DE交直線AC于點(diǎn)F,是否存在點(diǎn)P,使以點(diǎn)P、F、E、D為頂點(diǎn)的平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】
(1)

解:把B(﹣1,0),C(3,0),代入函數(shù)解析式得:

,

解得:

故拋物線解析式為:y=﹣x2+2x+3


(2)

解:設(shè)DE與x軸交于點(diǎn)H,

∵DE∥y軸,AD=2CD,

= = ,

∴DH=CH=1,

∴D(2,1),

∵點(diǎn)E在拋物線上,

∴E(2,3),

∵點(diǎn)P為x軸上方拋物線上的一點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為t,

∴﹣1<t<3,

∵△PDE的面積為S,

DE|t﹣2|=S,

∴S=|t﹣2|(﹣1<t<3),

即當(dāng)﹣1<t<2時(shí),S=2﹣t,

當(dāng)2<t<3時(shí),S=t﹣2


(3)

解:如圖所示:設(shè)直線AC的解析式為y=kx+b,

解得: ,

∴直線AC的解析式為y=﹣x+3,

假設(shè)拋物線上存在點(diǎn)P,使以點(diǎn)P、F、E、D為頂點(diǎn)的四邊形為平行四邊形,

設(shè)點(diǎn)P坐標(biāo)為(h,﹣h2+2h+3),

∵PF∥DE,

∴PF=DE,

∴F(h,﹣h+3),

∴﹣h2+2h+3﹣(﹣h+3)=2,

∴h2﹣3h+2=0,

∴h1=1,h2=2,

∴拋物線上存在點(diǎn)P,使以點(diǎn)P、F、E、D為頂點(diǎn)的四邊形為平行四邊形,點(diǎn)P的坐標(biāo)為(1,4)或(2,3).


【解析】(1)直接利用點(diǎn)B,C坐標(biāo),利用待定系數(shù)法求出函數(shù)解析即可;(2)由AD=2CD,DE∥y軸,得出D,E兩點(diǎn)的坐標(biāo),根據(jù)三角形的面積公式即可得出S與t之間的函數(shù)關(guān)系式,根據(jù)B,C兩點(diǎn)坐標(biāo)直接寫出t的取值范圍;(3)假設(shè)拋物線上存在點(diǎn)P,使以點(diǎn)P、F、E、D為頂點(diǎn)的四邊形為平行四邊形,求出直線AC的解析式,設(shè)出點(diǎn)P坐標(biāo),從而得出點(diǎn)F坐標(biāo),整理出關(guān)于h的方程,求出P點(diǎn)坐標(biāo),使以點(diǎn)P、F、E、D為頂點(diǎn)的四邊形為平行四邊形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點(diǎn)P在BA的延長線上,PD切⊙O于點(diǎn)D,過點(diǎn)B作BE垂直于PD,交PD的延長線于點(diǎn)C,連接AD并延長,交BE于點(diǎn)E.
(1)求證:AB=BE;
(2)若PA=2,cosB= ,求⊙O半徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是(

A. |a|=﹣a,則 a 定是負(fù)數(shù)

B. 單項(xiàng)式 x3y2z 的系數(shù)為 1,次數(shù)是 6

C. AP=BP,則點(diǎn) P 是線段 AB 的中點(diǎn)

D. 若∠AOC=AOB,則射線 OC 是∠AOB 的平分線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)欲購進(jìn)果汁飲料和碳酸飲料共50箱,兩種飲料每箱進(jìn)價(jià)和售價(jià)如下表所示:

飲料

果汁飲料

碳酸飲料

進(jìn)價(jià)(元/箱)

55

36

售價(jià)(元/箱)

63

42

設(shè)購進(jìn)果汁飲料x箱(x為正整數(shù)),且所購進(jìn)的兩種飲料能全部賣出,獲得的總利潤為w元(注:總利潤=總售價(jià)﹣總進(jìn)價(jià)).
(1)求總利潤w關(guān)于x的函數(shù)關(guān)系式;
(2)如果購進(jìn)兩種飲料的總費(fèi)用不超過2000元,那么該商場(chǎng)如何進(jìn)貨才能獲利最多?并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】火車站、機(jī)場(chǎng)、郵局等場(chǎng)所都有為旅客提供打包服務(wù)的項(xiàng)目.現(xiàn)有一個(gè)長、寬、高分別為a、b 、30的箱子(其中a>b),準(zhǔn)備采用如圖①、②的兩種打包方式,所用打包帶的總長(不計(jì)接頭處的長)分別記為

(1)圖①中打包帶的總長=________.

圖②中打包帶的總長=________.

(2)試判斷哪一種打包方式更節(jié)省材料,并說明理由.(提醒:先判斷再說理,說理過程即為比較 的大小.)

(3)b=40a為正整數(shù),在數(shù)軸上表示數(shù)的兩點(diǎn)之間有且只有19個(gè)整數(shù)點(diǎn),求a 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】形如半圓型的量角器直徑為4cm,放在如圖所示的平面直角坐標(biāo)系中(量角器的中心與坐標(biāo)原點(diǎn)O重合,零刻度線在x軸上),連接60°和120°刻度線的一個(gè)端點(diǎn)P、Q,線段PQ交y軸于點(diǎn)A,則點(diǎn)A的坐標(biāo)為(
A.(﹣1,
B.(0,
C.( ,0)
D.(1,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題。
(1)計(jì)算:|﹣2|+2cos60°﹣( 0
(2)解不等式: ﹣x>1,并將解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家環(huán)保局統(tǒng)一規(guī)定,空氣質(zhì)量分為5級(jí).當(dāng)空氣污染指數(shù)達(dá)0﹣50時(shí)為1級(jí),質(zhì)量為優(yōu);51﹣100時(shí)為2級(jí),質(zhì)量為良;101﹣200時(shí)為3級(jí),輕度污染;201﹣300時(shí)為4級(jí),中度污染;300以上時(shí)為5級(jí),重度污染.某城市隨機(jī)抽取了2015年某些天的空氣質(zhì)量檢測(cè)結(jié)果,并整理繪制成如圖兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息,解答下列各題:
(1)本次調(diào)查共抽取了天的空氣質(zhì)量檢測(cè)結(jié)果進(jìn)行統(tǒng)計(jì);
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中3級(jí)空氣質(zhì)量所對(duì)應(yīng)的圓心角為°;
(4)如果空氣污染達(dá)到中度污染或者以上,將不適宜進(jìn)行戶外活動(dòng),根據(jù)目前的統(tǒng)計(jì),請(qǐng)你估計(jì)2015年該城市有多少天不適宜開展戶外活動(dòng).(2015年共365天)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組數(shù)據(jù)x1,x2,…,xn的平均數(shù)為5,方差為16,其中n是正整數(shù),則另一組數(shù)據(jù)3x1+2,3x2+2,…,3xn+2的平均數(shù)和標(biāo)準(zhǔn)差分別是(  )

A. 15,144 B. 17,144 C. 17,12 D. 7,16

查看答案和解析>>

同步練習(xí)冊(cè)答案