【題目】如圖,在等腰直角△ABC中∠ABC=90°,AD平分∠BAC,點(diǎn)M、N分別是AD,AB上一動(dòng)點(diǎn),當(dāng)AC=6時(shí),BM+MN的最小值等于_______。
【答案】3.
【解析】
作N關(guān)于AD的對(duì)稱點(diǎn)為R,作AC邊上的高BE(E在AC上),求出BM+MN=BR,根據(jù)垂線段最短得出BM+MN≥BE,求出BE即可得出BM+MN的最小值.
解:作N關(guān)于AD的對(duì)稱點(diǎn)為R,作AC邊上的高BE(E在AC上),
∵AD平分∠CAB,
∴R必在AC上,
∵N關(guān)于AD的對(duì)稱點(diǎn)為R,
∴MR=MN,
∴BM+MN=BM+MR,
即BM+MN=BR≥BE(垂線段最短),
∵等腰直角△ABC,∠ABC=90°,BE⊥AC,
∴AE=CE,
∴BE=AC=3.
故答案為:3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把等邊三角形ABD和等邊三角形BCD拼合在一起,點(diǎn)E在AB邊上移動(dòng),且滿足AE=BF,試說明不論點(diǎn)E怎樣移動(dòng),△EDF總是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=(k﹣2)x﹣3k2+12.
(1)k為何值時(shí),圖象經(jīng)過原點(diǎn);
(2)k為何值時(shí),圖象與直線y=﹣2x+9的交點(diǎn)在y軸上;
(3)k為何值時(shí),圖象平行于y=﹣2x的圖象;
(4)k為何值時(shí),y隨x增大而減。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰△ABC中,∠ACB=90°,且AC=1.過點(diǎn)C作直線l∥AB,P為直線l上一點(diǎn),且AP=AB.則點(diǎn)P到BC所在直線的距離是( )
A.1
B.1或
C.1或
D. 或
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知斜放著的3個(gè)正方形面積分別為1,2,3,正放著的4個(gè)正方形的面積依次為S1,S2,S3,S4,求S1+S2+S3+S4的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y= 的圖象,當(dāng)x取1,2,3,…n時(shí),對(duì)應(yīng)在反比例圖象上的點(diǎn)分別為M1、M2、M3…Mn , 則 + +… = .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A城氣象臺(tái)測得臺(tái)風(fēng)中心在A城正西方向320km的B處,以每小時(shí)40km的速度向北偏東60°的BF方向移動(dòng),距離臺(tái)風(fēng)中心200km的范圍內(nèi)是受臺(tái)風(fēng)影響的區(qū)域.
(1)自己畫出圖形并解答:A城是否受到這次臺(tái)風(fēng)的影響?為什么?
(2)若A城受到這次臺(tái)風(fēng)影響,那么A城遭受這次臺(tái)風(fēng)影響有多長時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,AB=DB,∠ABD的平分線BE交AD于點(diǎn)E,∠CDB的平分線DF交BC于點(diǎn)F.求證:四邊形DFBE是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=4x與反比例函數(shù)y= (k≠0)相交與點(diǎn)A(1,a),B是反比例函數(shù)圖象上一點(diǎn),直線OB與x軸的夾角為α,且tanα= .
(1)求k的值.
(2)求點(diǎn)B的坐標(biāo).
(3)設(shè)點(diǎn)P點(diǎn)在y軸上,若△PAB是以AB為直角邊的直角三角形,則點(diǎn)P的坐標(biāo)為: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com