【題目】已知反比例函數(shù)y= 的圖象,當(dāng)x取1,2,3,…n時(shí),對(duì)應(yīng)在反比例圖象上的點(diǎn)分別為M1、M2、M3…Mn , 則 + +… =

【答案】
【解析】解:∵M(jìn)1(1,1),M2(2, ),M3(3, ),…,Mn(n, ),

∴SP1M1M2= ×1×(1﹣ ),SP2M2M3= ×1×( ),…,SPn1Mn1Mn= ×1×( ),

+ +… = ×1×(1﹣ )+ ×1×( )+…+ ×1×(

= (1﹣ + +…+

= =

所以答案是:

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解比例系數(shù)k的幾何意義的相關(guān)知識(shí),掌握幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線(xiàn)段與兩坐標(biāo)軸圍成的矩形的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,OC平分,C為角平分線(xiàn)上一點(diǎn),過(guò)點(diǎn)C,垂足為C,交OB于點(diǎn)D,OB于點(diǎn)E.

判斷的形狀,并說(shuō)明理由;

,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(10),B(03),直線(xiàn)BC交坐標(biāo)軸于B,C兩點(diǎn),且∠CBA45° 求直線(xiàn)BC的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為提高節(jié)水意識(shí),小申隨機(jī)統(tǒng)計(jì)了自己家7天的用水量,并分析了第3天的用水情況,將得到的數(shù)據(jù)進(jìn)行整理后,繪制成如圖所示的統(tǒng)計(jì)圖.(單位:)

(1)求這7天內(nèi)小申家每天用水量的平均數(shù)和中位數(shù);

(2)求第3天小申家洗衣服的水占這一天總用水量的百分比;

(3)請(qǐng)你根據(jù)統(tǒng)計(jì)圖中的信息,給小申家提出一條全理的節(jié)約用水建議,并估算采用你的建議后小申家一個(gè)月(30天計(jì)算)的節(jié)約用水量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰直角△ABC中∠ABC=90°,AD平分∠BAC,點(diǎn)M、N分別是AD,AB上一動(dòng)點(diǎn),當(dāng)AC=6時(shí),BM+MN的最小值等于_______。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小區(qū)為了綠化環(huán)境,計(jì)劃分兩次購(gòu)進(jìn)A、B兩種花草,第一次分別購(gòu)進(jìn)A、B兩種花草30棵和15棵,共花費(fèi)675元;第二次分別購(gòu)進(jìn)A、B兩種花草12棵和5棵.兩次共花費(fèi)940元(兩次購(gòu)進(jìn)的A、B兩種花草價(jià)格均分別相同).
(1)A、B兩種花草每棵的價(jià)格分別是多少元?
(2)若購(gòu)買(mǎi)A、B兩種花草共31棵,且B種花草的數(shù)量少于A(yíng)種花草的數(shù)量的2倍,請(qǐng)你給出一種費(fèi)用最省的方案,并求出該方案所需費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫(huà)弧交AD于點(diǎn)F,再分別以點(diǎn)B、F為圓心,大于長(zhǎng)為半徑畫(huà)弧,兩弧交于一點(diǎn)P,連接AP并延長(zhǎng)交BC于點(diǎn)E,連接EF

1)四邊形ABEF_______;(選填矩形、菱形、正方形、無(wú)法確定)(直接填寫(xiě)結(jié)果)

2AE,BF相交于點(diǎn)O,若四邊形ABEF的周長(zhǎng)為40,BF=10,則AE的長(zhǎng)為________∠ABC=________°.(直接填寫(xiě)結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,過(guò)B點(diǎn)作BM⊥AC于點(diǎn)E,交CD于點(diǎn)M,過(guò)D點(diǎn)作DN⊥AC于點(diǎn)F,交AB于點(diǎn)N.

(1)求證:四邊形BMDN是平行四邊形;

(2)已知AF=12,EM=5,求AN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】疫情期間,為減少交叉感染,催生了以智能技術(shù)為支撐的無(wú)接觸服務(wù).某快遞公司準(zhǔn)備購(gòu)進(jìn),兩種型號(hào)的智能機(jī)器人送快遞.經(jīng)市場(chǎng)調(diào)査發(fā)現(xiàn),型號(hào)機(jī)器人的單價(jià)比型號(hào)機(jī)器人貴600元,3臺(tái)型號(hào)機(jī)器人比2臺(tái)型號(hào)機(jī)器人貴1200元.

1)求兩種型號(hào)機(jī)器人的單價(jià)各是多少元?

2)若該快遞公司準(zhǔn)備用不超過(guò)132000元購(gòu)進(jìn)兩種型號(hào)機(jī)器人共50臺(tái),請(qǐng)問(wèn)該快遞公司最多可購(gòu)進(jìn)型號(hào)機(jī)器人多少臺(tái)?

查看答案和解析>>

同步練習(xí)冊(cè)答案