【題目】如圖1,在ABCD中,對角線ACBD相交于點(diǎn)0,添加下列條件后,能使ABCD成為矩形的是( 。

A. AB=ADB. AC=BDC. BD平分∠ABCD. ACBD

【答案】B

【解析】

根據(jù)矩形的判定方法逐一進(jìn)行分析即可.

A. 若添加AB=AD,根據(jù)有一組鄰邊相等的平行四邊形是菱形,可判斷四邊形ABCD為菱形,故不符合題意;

B.若添加AC=BD,根據(jù)對角線相等的平行四邊形是矩形,可判斷四邊形ABCD是矩形,故符合題意;

C.若添加BD平分∠ABC,則有∠ABD=∠DBC,∵平行四邊形ABCD中,AB//CD,∴∠ABD=∠CDB,∴∠DBC=CDB,∴BC=DC,∴平行四邊形ABCD是菱形,故不符合題意;

D. 若添加ACBD,根據(jù)對角線互相垂直的平行四邊形是菱形,可判斷四邊形ABCD是菱形,故不符合題意,

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的是( )

A.單項(xiàng)式 的系數(shù)是-2,次數(shù)是3B.單項(xiàng)式a的系數(shù)是0,次數(shù)是0

C.是三次三項(xiàng)式,常數(shù)項(xiàng)是1D.單項(xiàng)式的次數(shù)是2,系數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD相交于O.OF是∠BOD的平分線,OEOF.

(1)若∠BOE比∠DOF38°,求∠DOF和∠AOC的度數(shù);

(2)試問∠COE與∠BOE之間有怎樣的大小關(guān)系?請說明理由.

(3)BOE的余角是   ,BOE的補(bǔ)角是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】股民李明上星期六買進(jìn)春蘭公司股票1000股,每股27.下表為本周內(nèi)每日該股票的漲跌情況(單位:元)(注:本周一股票漲跌是在上周六的基礎(chǔ)上,用正數(shù)記股價(jià)比前一日上升數(shù),用負(fù)數(shù)記股價(jià)比前一日下降數(shù))

星期

每股漲跌

+4

+4.5

-1

-2.5

-6

+2

1)星期三收盤時(shí),每股是多少元?

2)本周內(nèi)最高價(jià)是每股多少元?最低價(jià)每股多少元?

3)己知李明買進(jìn)股票時(shí)付了0.15%的手續(xù)費(fèi),賣出時(shí)需付成交額0.15%的手續(xù)費(fèi)和0.1%的交易稅,如果李明在星期六收盤前將全部股票賣出,他的收益情況如何?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=ACAB的垂直平分線MNAC于點(diǎn)D,若∠A=36°,則下列結(jié)論:①∠C=72°;②BD是∠ABC的平分線;③△ADB是等腰三角形;④△BCD的周長=AB+BC.正確是______(填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們約定:64 2 2 2 2 2 2可表示成f (6)64,也可表示成g(64)6,

1)求:f (8) ;

2)求:g512);

(3)求:gf (x) x 為正整數(shù));

(4)f (x y) f (x) f ( y)x,y 是正整數(shù))成立嗎?為什么?

(5)x,y 分別表示若干個(gè)2相乘的積,類比④你能寫出與 g 相關(guān)的等式嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,過點(diǎn)DDEAB于點(diǎn)E,作DFBC于點(diǎn)F,連接EF求證:(1ADE≌△CDF;(2BEF=BFE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:p,q是正整數(shù),且),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×qn的完美分解.并規(guī)定:

例如18可以分解成1×18,2×93×6,因?yàn)?/span>1819263,所以3×618的完美分解,所以F18)=

1F13)= F24)= ;

2)如果一個(gè)兩位正整數(shù)t,其個(gè)位數(shù)字是a,十位數(shù)字為,交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為36,那么我們稱這個(gè)數(shù)為“和諧數(shù)”,求所有“和諧數(shù)”;

3)在(2)所得“和諧數(shù)”中,求Ft)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,的中點(diǎn),,.動點(diǎn)從點(diǎn)出發(fā),沿方向以的速度向點(diǎn)運(yùn)動;同時(shí)動點(diǎn)從點(diǎn)出發(fā),沿方向以的速度向點(diǎn)運(yùn)動,運(yùn)動時(shí)間是秒.

(1)用含的代數(shù)式表示的長度.

(2)在運(yùn)動過程中,是否存在某一時(shí)刻,使點(diǎn)位于線段的垂直平分線上?若存在,求出的值;若不存在,請說明理由.

(3)是否存在某一時(shí)刻,使?若存在,求出的值;若不存在,請說明理由.

(4)是否存在某一時(shí)刻,使?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案