【題目】如圖,在菱形ABCD中,過點(diǎn)DDEAB于點(diǎn)E,作DFBC于點(diǎn)F,連接EF求證:(1ADE≌△CDF;(2BEF=BFE

【答案】(1)證明見解析;(2)證明見解析.

【解析】試題分析:(1)利用菱形的性質(zhì)得到AD=CD,A=∠C,進(jìn)而利用AAS證明兩三角形全等;

2)根據(jù)ADE≌△CDF得到AE=CF,結(jié)合菱形的四條邊相等即可得到結(jié)論.

試題解析:證明:(1四邊形ABCD是菱形,AD=CDA=∠C,DEBA,DFCB,∴∠AED=∠CFD=90°,在ADECDEAD=CD,A=∠C,AED=∠CFD=90°,∴△ADE≌△CDE

2四邊形ABCD是菱形,AB=CB∵△ADE≌△CDF,AE=CF,BE=BF,∴∠BEF=∠BFE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=4,AD=3,現(xiàn)將紙片折疊,點(diǎn)D的對應(yīng)點(diǎn)記為點(diǎn)P,折痕為EF(點(diǎn)EF是折痕與矩形的邊的交點(diǎn)),再將紙片還原.

1)若點(diǎn)P落在矩形ABCD的邊AB(如圖1)

當(dāng)點(diǎn)P與點(diǎn)A重合時,∠DEF=    °,當(dāng)點(diǎn)E與點(diǎn)A重合時,∠DEF=    °.

當(dāng)點(diǎn)EAB上時,點(diǎn)FDC上時(如圖2),若AP=,求四邊形EPFD的周長.

2)若點(diǎn)F與點(diǎn)C重合,點(diǎn)EAD上,線段BA與線段FP交于點(diǎn)M(如圖3),當(dāng)AM=DE時,請求出線段AE的長度.

3)若點(diǎn)P落在矩形的內(nèi)部(如圖4),且點(diǎn)E、F分別在AD、DC邊上,請直接寫出AP的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】珠海市水務(wù)局對某小區(qū)居民生活用水情況進(jìn)行了調(diào)査.隨機(jī)抽取部分家庭進(jìn)行統(tǒng)計(jì),繪制成如下尚未完成的頻數(shù)分布表和頻率分布直方圖.請根據(jù)圖表,解答下列問題:

月均用水量(單位:噸

頻數(shù)

頻率

2≤x3

4

0.08

3≤x4

a

b

4≤x5

14

0.28

5≤x6

9

c

6≤x7

6

0.12

7≤x8

5

0.1

合計(jì)

d

1.00

1b= ,c= ,并補(bǔ)全頻數(shù)分布直方圖;

2)為鼓勵節(jié)約用水用水,現(xiàn)要確定一個用水量標(biāo)準(zhǔn)P(單位:噸),超過這個標(biāo)準(zhǔn)的部分按1.5倍的價格收費(fèi),若要使60%的家庭水費(fèi)支出不受影響,則這個用水量標(biāo)準(zhǔn)P= 噸;

3)根據(jù)該樣本,請估計(jì)該小區(qū)400戶家庭中月均用水量不少于5噸的家庭約有多少戶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:正方形ABCD,等腰直角三角板的直角頂點(diǎn)落在正方形的頂點(diǎn)D處,使三角板繞點(diǎn)D旋轉(zhuǎn).

(1)當(dāng)三角板旋轉(zhuǎn)到圖1的位置時,猜想CE與AF的數(shù)量關(guān)系,并加以證明;

(2)在(1)的條件下,若DE:AE:CE= 1: :3,求∠AED的度數(shù);

(3)若BC= 4,點(diǎn)M是邊AB的中點(diǎn),連結(jié)DM,DM與AC交于點(diǎn)O,當(dāng)三角板的一邊DF與邊DM重合時(如圖2),若OF=,求CN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,直線l1:x軸交于點(diǎn)A,與y軸交于點(diǎn)B,直線l2:x軸交于點(diǎn)C,與直線l1交于點(diǎn)P

1)當(dāng)k=1時,求點(diǎn)P的坐標(biāo);

2)如圖1,點(diǎn)DPA的中點(diǎn),過點(diǎn)DDE⊥x軸于E,交直線l2于點(diǎn)F,若DF=2DE,求k的值;

3)如圖2,點(diǎn)P在第二象限內(nèi),PM⊥x軸于M,以PM為邊向左作正方形PMNQ,NQ的延長線交直線l1于點(diǎn)R,若PR=PC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是正方形ABCD內(nèi)的一點(diǎn),且PA=1,PB=PD=,則∠APB的度數(shù)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們給出如下定義:順次連接任意一個四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.

(1如圖1,四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn).求證:中點(diǎn)四邊形EFGH是平行四邊形;

(2如圖2,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;

(3若改變(2中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點(diǎn)四邊形EFGH的形狀.(不必證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】彈簧掛上物體后會伸長,(在彈性限度內(nèi))已知一彈簧的長度與所掛物體的質(zhì)量之間的關(guān)系如下表:

物體的質(zhì)量

0

1

2

3

4

5

彈簧的長度

12

12.5

13

13.5

14

14.5

1)當(dāng)物體的質(zhì)量為時,彈簧的長度是多少?

2)如果物體的質(zhì)量為,彈簧的長度為,根據(jù)上表寫出x的關(guān)系式;

3)當(dāng)物體的質(zhì)量為時,求彈簧的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,任意一個正整數(shù)都可以進(jìn)行這樣的分解:是正整數(shù),且),在的所有這種分解中,如果兩因數(shù)之差的絕對值最小,我們就稱的最佳分解,產(chǎn)規(guī)定:,例如:12可以分解成,,因?yàn)?/span>,所以12的最佳分解,所以.

1)求;

2)若正整數(shù)4的倍數(shù),我們稱正整數(shù)四季數(shù),如果一個兩位正整數(shù),,為自然數(shù)),交換個位上的數(shù)字與十位上的數(shù)字得到的新兩位正整數(shù)減去原來的兩位正整數(shù)所得的差為四季數(shù),那么我們稱這個數(shù)有緣數(shù),求所有有緣數(shù)的最小值.

查看答案和解析>>

同步練習(xí)冊答案