【題目】如圖,扇形OAB中,∠AOB=60°,扇形半徑為4,點(diǎn)C上,CDOA,垂足為點(diǎn)D,當(dāng)△OCD的面積最大時(shí),圖中陰影部分的面積為_____

【答案】2π-4

【解析】

OC4,點(diǎn)C上,CDOA,求得DC,運(yùn)用SOCDOD,求得OD時(shí)△OCD的面積最大,運(yùn)用陰影部分的面積扇形AOC的面積-△OCD的面積求解.

OC4,點(diǎn)C上,CDOA,∴DC,∴SOCDOD,∴SOCD2OD216OD2)=-OD44OD2=-OD28216∴當(dāng)OD28,即OD2時(shí)△OCD的面積最大,∴DC2,∴∠COA45°,∴陰影部分的面積扇形AOC的面積-△OCD的面積42π4,故答案為2π4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在△ABC中,AB4BC5,CA6.

(1)如果DE10,那么當(dāng)EF________,FD________時(shí),△DEF∽△ABC;

(2)如果DE10,那么當(dāng)EF________,FD________時(shí),△FDE∽△ABC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形OABC的頂點(diǎn)A、C分別在x、y軸的正半軸上,點(diǎn)D為對(duì)角線OB的中點(diǎn),點(diǎn)E(4,n)在邊AB上,反比例函數(shù)(k≠0)在第一象限內(nèi)的圖象經(jīng)過(guò)點(diǎn)D、E,且tan∠BOA=

(1)求邊AB的長(zhǎng);

(2)求反比例函數(shù)的解析式和n的值;

(3)若反比例函數(shù)的圖象與矩形的邊BC交于點(diǎn)F,將矩形折疊,使點(diǎn)O與點(diǎn)F重合,折痕分別與x、y軸正半軸交于點(diǎn)H、G,求線段OG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的邊長(zhǎng)AD=3,AB=2,E為AB的中點(diǎn),F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點(diǎn)M,N,則MN的長(zhǎng)為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD是矩形,且MO=MD=4,MC=3.

(1)求直線BM的解析式;

(2)求過(guò)A、MB三點(diǎn)的拋物線的解析式;

(3)在(2)中的拋物線上是否存在點(diǎn)P,使△PMB構(gòu)成以BM為直角邊的直角三角形?若沒(méi)有,請(qǐng)說(shuō)明理由;若有,則求出一個(gè)符合條件的P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】9分)如圖,AB是半圓O的直徑,點(diǎn)P是半圓上不與點(diǎn)A、B重合的一個(gè)動(dòng)點(diǎn),延長(zhǎng)BP到點(diǎn)C,使PC=PB,DAC的中點(diǎn),連接PD,PO.

1)求證:△CDP≌△POB;

2)填空:

AB=4,則四邊形AOPD的最大面積為 ;

連接OD,當(dāng)∠PBA的度數(shù)為 時(shí),四邊形BPDO是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某藥品研究所開發(fā)一種抗菌新藥,經(jīng)多年動(dòng)物實(shí)驗(yàn),首次用于臨床人體試驗(yàn),測(cè)得成人服藥后血液中藥物濃度y(微克/毫升)與服藥時(shí)間x小時(shí)之間函數(shù)關(guān)系如圖所示(當(dāng)4≤x≤10時(shí),yx成反比例).

1)根據(jù)圖象分別求出血液中藥物濃度上升和下降階段yx之間的函數(shù)關(guān)系式.

2)問(wèn)血液中藥物濃度不低于2微克/毫升的持續(xù)時(shí)間多少小時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】名聞遐邇的采花毛尖明前茶,成本每廳400元,某茶場(chǎng)今年春天試營(yíng)銷,每周的銷售量y(斤)是銷售單價(jià)x(元/斤)的一次函數(shù),且滿足如下關(guān)系:

x(元/斤)

450

500

600

y(斤)

350

300

200

1)請(qǐng)根據(jù)表中的數(shù)據(jù)求出yx之間的函數(shù)關(guān)系式;

2)若銷售每斤茶葉獲利不能超過(guò)40%,該茶場(chǎng)每周獲利不少于30000元,試確定銷售單價(jià)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,ABC 頂點(diǎn) A2,3).若以原點(diǎn) O 為位似中心,畫三角形 ABC

的位似圖形A′B′C′,使ABC A′B′C′的相似比為,則 A′的坐標(biāo)為(

A. (3, ) B. ( ,6) C. (3, )(-3,- ) D. ( ,6)(- ,-6)

查看答案和解析>>

同步練習(xí)冊(cè)答案