【題目】如圖,直角三角板的直角頂點O在直線AB上,OC,OD是三角板的兩條直角邊,OE平分∠AOD.
(1)若∠COE=20°,則∠BOD= ;若∠COE=α,則∠BOD= (用含α的代數(shù)式表示)
(2)當三角板繞O逆時針旋轉(zhuǎn)到圖2的位置時,其它條件不變,試猜測∠COE與∠BOD之間有怎樣的數(shù)量關(guān)系?并說明理由.
【答案】(1)40°;2α;(2)∠BOD=2∠COE.
【解析】試題分析:(1)先根據(jù)直角計算∠DOE的度數(shù),再同角平分線的定義計算∠AOD的度數(shù),最后利用平角的定義可得結(jié)論;
(2)設(shè)∠BOD=β,則∠AOD=180°-β,根據(jù)角平分線的定義表示∠BOE,再利用互余的關(guān)系求∠COE的度數(shù),可得結(jié)論.
試題解析:(1)若∠COE=20°,
∵∠COD=90°,
∴∠EOD=90°﹣20°=70°,
∵OE平分∠AOD,
∴∠AOD=2∠EOD=140°,
∴∠BOD=180°﹣140°=40°;
若∠COE=α,
∴∠EOD=90﹣α,
∵OE平分∠AOD,
∴∠AOD=2∠EOD=2(90﹣α)=180﹣2α,
∴∠BOD=180°﹣(180﹣2α)=2α;
故答案為:40°;2α;
(2)如圖2,∠BOD=2∠COE,理由是:
設(shè)∠BOD=β,則∠AOD=180°﹣β,
∵OE平分∠AOD,
∴∠EOD=∠AOD==90°﹣,
∵∠COD=90°,
∴∠COE=90°﹣(90°﹣)=,
即∠BOD=2∠COE.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,AC,BD是對角線。將△DCB繞著點D順時針旋轉(zhuǎn)45°得到△DGH,HG交AB于點E,連接DE交AC于點F,連接FG。則下列結(jié)論:
①四邊形AEGF是菱形 ②△AED≌△GED
③∠DFG=112.5° ④BC+FG=1.5
其中正確的結(jié)論是( )
A. ①②③④ B. ①②③ C. ①② D. ②
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(0,2),△AOB為等邊三角形,P是x軸上一個動點(不與原O重合),以線段AP為一邊在其右側(cè)作等邊三角形△APQ.
(1)求點B的坐標;
(2)在點P的運動過程中,∠ABQ的大小是否發(fā)生改變?如不改變,求出其大。蝗绺淖,請說明理由.
(3)連接OQ,當OQ∥AB時,求P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△A1C1C2的周長為1,作C1D1⊥A1C2于D1,在C1C2的延長線上取點C3,使D1C3=D1C1,連接D1C3,以C2C3為邊作等邊△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延長線上取點C4,使D2C4=D2C2,連接D2C4,以C3C4為邊作等邊△A3C3C4;…且點A1,A2,A3,…都在直線C1C2同側(cè),如此下去,則△A1C1C2,△A2C2C3,△A3C3C4,…,△AnCnCn+1的周長和為______.(n≥2,且n為整數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)觀察思考
如圖所示,線段AB上的點數(shù)與線段的總條數(shù)有如下關(guān)系:如果線段AB上有3個點,那么線段總條數(shù)為3;如果線段AB上有4個點,那么線段總條數(shù)為6;如果線段AB上有5個點,那么線段總條數(shù)為________.
3=2+1=
6=3+2+1=
(2)模型構(gòu)建
如果線段上有m個點(包括線段的兩個端點),那么共有________條線段.
(3)拓展應用
8位同學參加班上組織的象棋比賽,比賽采用單循環(huán)制(即每兩位同學之間都要進行一場比賽),那么一共要進行多少場比賽?
請將這個問題轉(zhuǎn)化為上述模型,并直接應用上述模型的結(jié)論解決問題.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,已知點A(﹣3,0)、B(0,4),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到△1、△2、△3、△4…,則△2016的直角坐標頂點的坐標為( )
A.(8053,0)
B.(8064,0)
C.(8053, )
D.(8064, )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了響應國家發(fā)展足球的戰(zhàn)略方針,激發(fā)學生對足球的興趣,特舉辦全員參與的“足球比賽”,賽后,全校隨機抽查部分學生,其成績(百分制)整理分成5組,并制成如下頻數(shù)分布表和扇形統(tǒng)計圖,請根據(jù)所提供的信息解答下列問題:
成績頻數(shù)分布表
組別 | 成績(分) | 頻數(shù) |
A | 50≤x<60 | 6 |
B | 60≤x<70 | m |
C | 70≤x<80 | 20 |
D | 80≤x<90 | 36 |
E | 90≤x<100 | n |
(1)頻數(shù)分布表中的m= , n=;
(2)樣本中位數(shù)所在成績的級別是 , 扇形統(tǒng)計圖中,E組所對應的扇形圓心角的度數(shù)是;
(3)若該校共有2000名學生,請你估計體育綜合測試成績不少于80分的大約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)直線y=kx+4經(jīng)過點(1,2),求不等式kx+4≥0的解集.
(2)x取哪些正整數(shù)時,不等式 x+3>6 與 2x-1<10 都成立?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1的正方形ABCD中,動點F,E分別以相同的速度從D,C兩點同時出發(fā)向C和B運動(任何一個點到達即停止),過點P作PM∥CD交BC于M點,PN∥BC交CD于N點,連接MN,在運動過程中, ①AE和BF的位置關(guān)系為;
②線段MN的最小值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com