【題目】已知:如圖,在矩形ABCD中,,分別是邊,的中點(diǎn),,分別是線段的中點(diǎn).

(1)求證:;

(2)判斷四邊形是什么特殊四邊形,并證明你的結(jié)論;

(3)當(dāng)四邊形是正方形時(shí),求的值

【答案】(1)證明見解析(2)四邊形MENF是菱形(3)2

【解析】分析:(1)因?yàn)?/span>MAD中點(diǎn),根據(jù)全等三角形的判定定理推出即可;

(2)根據(jù)三角形中位線定理求出NEMC,NF=MB,得出平行四邊形,求出BM=CM,推出ME=MF,根據(jù)菱形的判定推出即可;

(3)求出EMF=90°,根據(jù)正方形的判定推出即可.

詳解:(1)證明:∵四邊形是矩形,

, 90°,

又∵的中點(diǎn), ∴

中,

,

(2)解:四邊形是菱形.

分別是的中點(diǎn),

,

∴四邊形是平行四邊形.

由(1),得

∴四邊形是菱形.

(3)解:∵四邊形是正方形.

,

又∵的中點(diǎn),

,

,

,

又∵的中點(diǎn),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上三點(diǎn)M,ON對(duì)應(yīng)的數(shù)分別為-1,0,3,點(diǎn)P為數(shù)軸上任意一點(diǎn)其對(duì)應(yīng)的數(shù)為x

1MN的長(zhǎng)為 ;

2如果點(diǎn)P到點(diǎn)M、點(diǎn)N的距離相等那么x的值是 ;

3數(shù)軸上是否存在點(diǎn)P,使點(diǎn)P到點(diǎn)M、點(diǎn)N的距離之和是8?若存在,直接寫出x的值;若不存在請(qǐng)說明理由

4如果點(diǎn)P以每分鐘1個(gè)單位長(zhǎng)度的速度從點(diǎn)O向左運(yùn)動(dòng),同時(shí)點(diǎn)M和點(diǎn)N分別以每分鐘2個(gè)單位長(zhǎng)度和每分鐘3個(gè)單位長(zhǎng)度的速度也向左運(yùn)動(dòng).設(shè)t分鐘時(shí)點(diǎn)P到點(diǎn)M、點(diǎn)N的距離相等,t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為支持抗震救災(zāi),我市A、B兩地分別有賑災(zāi)物資100噸和180噸,需全部運(yùn)往重災(zāi)區(qū)C、D兩縣,根據(jù)災(zāi)區(qū)的情況,這批賑災(zāi)物資運(yùn)往C縣的數(shù)量比運(yùn)往D縣的數(shù)量的2倍少80噸.
(1)求這批賑災(zāi)物資運(yùn)往C、D兩縣的數(shù)量各是多少噸?
(2)設(shè)A地運(yùn)往C縣的賑災(zāi)物資數(shù)量為x噸(x為整數(shù)).若要B地運(yùn)往C縣的賑災(zāi)物資數(shù)量大于A地運(yùn)往D縣賑災(zāi)物資數(shù)量的2倍,且要求B地運(yùn)往D縣的賑災(zāi)物資數(shù)量不超過63噸,則A、B兩地的賑災(zāi)物資運(yùn)往C、D兩縣的方案有幾種?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡(jiǎn),再求值: ,其中x=2sin60°﹣( 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一名足球守門員練習(xí)折返跑,從球門線出發(fā),向前記作正數(shù),返回記作負(fù)數(shù),他的記錄如下:(單位:米)+5,-3,+10,-8,-6,+12,-10

(1)守門員最后是否回到了球門線的位置?

(2)在練習(xí)過程中,守門員離開球門最遠(yuǎn)距離是多少米?

(3)守門員全部練習(xí)結(jié)束后,他共跑了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在△ABC中,AB=AC.過A點(diǎn)的直線a從與邊AC重合的位置開始繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)角θ,直線a交BC邊于點(diǎn)P(點(diǎn)P不與點(diǎn)B、點(diǎn)C重合),△BMN的邊MN始終在直線a上(點(diǎn)M在點(diǎn)N的上方),且BM=BN,連接CN.

(1)當(dāng)∠BAC=∠MBN=90°時(shí),
①如圖a,當(dāng)θ=45°時(shí),∠ANC的度數(shù)為
②如圖b,當(dāng)θ≠45°時(shí),①中的結(jié)論是否發(fā)生變化?說明理由;
(2)如圖c,當(dāng)∠BAC=∠MBN≠90°時(shí),請(qǐng)直接寫出∠ANC與∠BAC之間的數(shù)量關(guān)系,不必證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜邊AB邊中線CD,得到第一個(gè)三角形ACD;DE⊥BC于點(diǎn)E,作Rt△BDE斜邊DB上中線EF,得到第二個(gè)三角形DEF;依此作下去…則第n個(gè)三角形的面積等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線AB,CD相交于點(diǎn)O,OE平分∠AOD,F(xiàn)O⊥AB,垂足為O,∠BOD=∠DOE.

(1)求BOF的度數(shù);

(2)請(qǐng)寫出圖中與BOD相等的所有的角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸是一個(gè)非常重要的數(shù)學(xué)工具,它使數(shù)和數(shù)軸上的點(diǎn)建立對(duì)應(yīng)關(guān)系,解釋了數(shù)與點(diǎn)之間的內(nèi)在聯(lián)系,它是“數(shù)形結(jié)合”的基礎(chǔ)。

如圖,數(shù)軸上有三個(gè)點(diǎn)A、B、C,它們可以沿著數(shù)軸左右移動(dòng),請(qǐng)回答

(1)將點(diǎn)B向右移動(dòng)4個(gè)單位長(zhǎng)度后到達(dá)點(diǎn)D,點(diǎn)D表示的數(shù)是 ,A、D兩點(diǎn)之間的距離是 ;

(2)移動(dòng)點(diǎn)A到達(dá)E點(diǎn),使B、C、E三點(diǎn)的其中某一點(diǎn)到其它兩點(diǎn)的距離相等,寫出點(diǎn)E在數(shù)軸上對(duì)應(yīng)的數(shù)值 ;

查看答案和解析>>

同步練習(xí)冊(cè)答案