【題目】某區(qū)教研部門對本區(qū)初二年級的學(xué)生進(jìn)行了一次隨機抽樣問卷調(diào)查,其中有這樣一個問題:老師在課堂上放手讓學(xué)生提問和表達(dá)( )
A.從不 B.很少 C.有時 D.常常 E.總是
答題的學(xué)生在這五個選項中只能選擇一項.下面是根據(jù)學(xué)生對該問題的答卷情況繪制的兩幅不完整的統(tǒng)計圖.
根據(jù)以上信息,解答下列問題:
(1)該區(qū)共有 名初二年級的學(xué)生參加了本次問卷調(diào)查;
(2)請把這幅條形統(tǒng)計圖補充完整;
(3)在扇形統(tǒng)計圖中,“總是”的圓心角為 .(精確到度)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠?/span>
(1)x2﹣4x+1=0 (2)x2+5x+7=0
(3)3x(x﹣1)=2﹣2x (4)x2=x+56
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】電業(yè)部門每月都按時取居民家查電表,電表讀數(shù)與上次讀數(shù)的差就是這段時間內(nèi)用電的千瓦時數(shù).上月初小亮家電表顯示的度數(shù)為,本月初電表顯示的讀數(shù)為.
(1)小亮家上月用電多少千瓦時?
(2)如果每千瓦時的電費為元,全月的電費為(元),那么上月小亮家應(yīng)繳費電費與本月初電表顯示讀數(shù)之間的關(guān)系式是什么?
(3)在問題(2)中,哪些量是常量?哪些量是變量?是哪個變量的函數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上的點A、B、C分別表示數(shù)﹣3、﹣1、2.
(1)A、B兩點的距離AB=________,A、C兩點的距離AC=________ ;
(2)通過觀察,可以發(fā)現(xiàn)數(shù)軸上兩點間距離與這兩點表示的數(shù)的差的絕對值有一定關(guān)系,按照此關(guān)系,若點E表示的數(shù)為x,則AE=________ ;
(3)利用數(shù)軸直接寫出|x﹣1|+|x+3|的最小值=________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,∠BAC= 90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BD⊥CF成立.
(1)當(dāng)△ABC繞點A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當(dāng)△ABC繞點A逆時針旋轉(zhuǎn)45°時,如圖3,延長DB交CF于點H.
①求證:BD⊥CF;
②當(dāng)AB=2,AD=3時,求線段DH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】記:P1=﹣2,P2=(﹣2)×(﹣2),P3=(﹣2)×(﹣2)×(﹣2),…,.
(1)計算P7÷P8的值;
(2)計算2P2019+P2020的值;
(3)猜想2Pn與Pn+1的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料,回答問題
距離能夠產(chǎn)生美.
唐代著名文學(xué)家韓愈曾賦詩:“天街小雨潤如酥,草色遙看近卻無.
當(dāng)代印度著名詩人泰戈爾在《世界上最遙遠(yuǎn)的距離》中寫道:
“世界上最遙遠(yuǎn)的距離
不是瞬間便無處尋覓
而是尚未相遇
便注定無法相聚”
距離是數(shù)學(xué)、天文學(xué)、物理學(xué)中的熱門話題,唯有對宇宙距離進(jìn)行測量,人類才能掌握世界尺度.
已知點 A,B 在數(shù)軸上分別表示有理數(shù) a,b,A,B 兩點之間的距離表示為 AB.
()當(dāng) A,B 兩點中有一點在原點時,不妨設(shè)點 A 在原點,如圖 1,.
()當(dāng) A,B 兩點都不在原點時,
①如圖 2,點 A,B 都在原點的右邊,;
②如圖 3,點 A,B 都在原點的左邊,;
③如圖 4,點 A,B 在原點的兩邊,.
綜上,數(shù)軸上 A,B 兩點的距離 .
利用上述結(jié)論,回答以下三個問題:
(1)若數(shù)軸上表示 和的兩點之間的距離是,則 ;
(2)若代數(shù)式 取最小值時,則的取值范圍是 ;
(3)若未知數(shù) , 滿足 ,則代數(shù)式 的最大值是 ,最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,在平面直角坐標(biāo)系中,點A,B,C都在坐標(biāo)軸上,且OA=OB=OC,△ABC的面積為9,點P從C點出發(fā)沿y軸負(fù)方向以1個單位/秒的速度向下運動,連接PA,PB,D(﹣m,﹣m)為AC上的點(m>0)
(1)試分別求出A,B,C三點的坐標(biāo);
(2)設(shè)點P運動的時間為t秒,問:當(dāng)t為何值時,DP與DB垂直且相等?請說明理由;
(3)如圖2,若PA=AB,在第四象限內(nèi)有一動點Q,連QA,QB,QP,且∠PQA=60°,當(dāng)Q在第四象限內(nèi)運動時,求∠APQ與∠PBQ的度數(shù)和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線的解析式為,該直線與軸、軸分別交于點,以為邊在第一象限內(nèi)作正△ABC.若點在第一象限內(nèi),且滿足,則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com