【題目】王老漢為了與顧客簽訂購(gòu)銷合同,對(duì)自己魚塘中魚的總質(zhì)量進(jìn)行了估計(jì),第一次撈出100條,稱得質(zhì)量為184千克.并將每條魚做上記號(hào)后放入水中,當(dāng)它們完全混合于魚群后,又撈出200條,稱得質(zhì)量為416千克,且?guī)в杏浱?hào)的魚有20條,王老漢的魚塘中估計(jì)有魚多少條魚?總質(zhì)量為多少千克?
【答案】1000;2011.
【解析】試題分析:由題意可知:帶有記號(hào)的魚占第二次所撈魚數(shù)的10%,撈倒的魚標(biāo)記號(hào)所占的比例和整個(gè)池子的魚中標(biāo)號(hào)占的比例一樣所以總魚數(shù)即可求出;在計(jì)算魚的平均重量時(shí),求出總體樣本的平均數(shù)進(jìn)而得出即可.
試題解析:由題意可知:第一次撈出的魚的條數(shù)占魚塘中魚的總條數(shù)的.
所以估計(jì)魚塘中的魚的總條數(shù)為100÷=1000(條),
魚塘中每條魚的平均質(zhì)量為: (千克),
∴ 魚塘中估計(jì)有1000條魚,總質(zhì)量為2.011×1000=2011(千克).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的直徑為10,點(diǎn)A,點(diǎn)B,點(diǎn)C在⊙O上,∠CAB的平分線交⊙O于點(diǎn)D.
(1)如圖①,若BC為⊙O的直徑,AB=6,求AC,BD,CD的長(zhǎng);
(2)如圖②,若∠CAB=60°,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)正多邊形的每個(gè)內(nèi)角都比與它相鄰的外角的3倍還多20°,則此正多邊形是_____ 邊形,共有_____ 條對(duì)角線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三個(gè)邊長(zhǎng)均為4的正方形重疊在一起,O1,O2是其中左側(cè)兩個(gè)正方形的對(duì)角線交點(diǎn),同時(shí)O1,O2也是右側(cè)兩個(gè)正方形的頂點(diǎn),根據(jù)教材第63頁《實(shí)踐與探究》活動(dòng)中有關(guān)內(nèi)容,可知陰影部分面積是( 。
A.2B.4C.6D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中, , ,將繞點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)得到.
(1)線段的長(zhǎng)是 , 的度數(shù)是 ;
(2)連結(jié),求證:四邊形是平行四邊形;
(3)求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形網(wǎng)格中,每個(gè)小方格都是邊長(zhǎng)為1 的正方形,建立如圖所示的平面直角坐標(biāo)系,的三個(gè)頂點(diǎn)都落在小正方形方格的頂點(diǎn)上
(1)點(diǎn)A的坐標(biāo)是 ,點(diǎn)B的坐標(biāo)是 ,點(diǎn)C的坐標(biāo)是 ;
(2)在圖中畫出關(guān)于y軸對(duì)稱的;
(3)直接寫出的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列一組圖形中的個(gè)數(shù),其中第1個(gè)圖中共有4個(gè)點(diǎn),第2個(gè)圖中共有10個(gè)點(diǎn),第3個(gè)圖中共有19個(gè)點(diǎn),……,按此規(guī)律第5個(gè)圖中共有點(diǎn)的個(gè)數(shù)是( )
A. 31 B. 46 C. 51 D. 66
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知直線y=﹣2x+4與兩坐標(biāo)軸分別交于點(diǎn)A、B,點(diǎn)C為線段OA上一動(dòng)點(diǎn),連接BC,作BC的中垂線分別交OB、AB交于點(diǎn)D、E.
(l)當(dāng)點(diǎn)C與點(diǎn)O重合時(shí),DE= ;
(2)當(dāng)CE∥OB時(shí),證明此時(shí)四邊形BDCE為菱形;
(3)在點(diǎn)C的運(yùn)動(dòng)過程中,直接寫出OD的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線AC相交于點(diǎn)F,設(shè)DE=x.
(1)用含x的代數(shù)式表示線段CF的長(zhǎng);
(2)如果把△CAE的周長(zhǎng)記作C△CAE,△BAF的周長(zhǎng)記作C△BAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;
(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com