【題目】如圖1,已知直線y=﹣2x+4與兩坐標軸分別交于點A、B,點C為線段OA上一動點,連接BC,作BC的中垂線分別交OB、AB交于點D、E.
(l)當(dāng)點C與點O重合時,DE= ;
(2)當(dāng)CE∥OB時,證明此時四邊形BDCE為菱形;
(3)在點C的運動過程中,直接寫出OD的取值范圍.
【答案】(1)1;(2)證明詳見解析;(3)≤OD≤2.
【解析】
試題分析:(1)畫出圖形,根據(jù)DE垂直平分BC,可得出DE是△BOA的中位線,從而利用中位線的性質(zhì)求出DE的長度;
(2)先根據(jù)中垂線的性質(zhì)得出DB=DC,EB=EC,然后結(jié)合CE∥OB判斷出BE∥DC,得出四邊形BDCE為平行四邊形,結(jié)合DB=DC可得出結(jié)論.
(3)求兩個極值點,①當(dāng)點C與點A重合時,OD取得最小值,②當(dāng)點C與點O重合時,OD取得最大值,繼而可得出OD的取值范圍.
試題解析:解:∵直線AB的解析式為y=﹣2x+4,
∴點A的坐標為(2,0),點B的坐標為(0,4),即可得OB=4,OA=2,
(1)當(dāng)點C與點O重合時如圖所示,
∵DE垂直平分BC(BO),
∴DE是△BOA的中位線,
∴DE=OA=1;
(2)當(dāng)CE∥OB時,如圖所示:
∵DE為BC的中垂線,
∴BD=CD,EB=EC,
∴∠DBC=∠DCB,∠EBC=∠ECB,
∴∠DCE=∠DBE,
∵CE∥OB,
∴∠CEA=∠DBE,
∴∠CEA=∠DCE,
∴BE∥DC,
∴四邊形BDCE為平行四邊形,
又∵BD=CD,
∴四邊形BDCE為菱形.
(3)當(dāng)點C與點O重合時,OD取得最大值,此時OD=OB=2;
當(dāng)點C與點A重合時,OD取得最小值,如圖所示:
在Rt△AOB中,AB==2,
∵DE垂直平分BC(BA),
∴BE=BA=,
易證△BDE∽△BAO,
∴,即,
解得:BD=,
則OD=OB﹣BD=4﹣=.
綜上可得:≤OD≤2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點O為數(shù)軸原點,點A在數(shù)軸上對應(yīng)的數(shù)為a,點B對應(yīng)的數(shù)為b,A、B之間的距離記作AB,且|a+4|+(b﹣10)2=0.
(1)求線段AB的長;
(2)設(shè)點P在數(shù)軸上對應(yīng)的數(shù)為x,當(dāng)PA+PB=20時,求x的值;
(3)如圖,M、N兩點分別從O、B出發(fā)以v1、v2的速度同時沿數(shù)軸負方向運動(M在線段AO上,N在線段BO上),P是線段AN的中點,若M、N運動到任一時刻時,總有PM為定值,下列結(jié)論:①的值不變;②v1+v2的值不變.其中只有一個結(jié)論是正確的,請你找出正確的結(jié)論并求值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標系xOy中(如圖),已知拋物線y=ax2+bx+3與y軸相交于點C,與x軸正半軸相交于點A,OA=OC,與x軸的另一個交點為B,對稱軸是直線x=1,頂點為P.
(1)求這條拋物線的表達式和頂點P的坐標;
(2)拋物線的對稱軸與x軸相交于點M,求∠PMC的正切值;
(3)點Q在y軸上,且△BCQ與△CMP相似,求點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年3月25日是第二十四個“全國中小學(xué)生安全教育日”,某校為加強學(xué)生的安全意識,以“防火、防溺水、防食物中毒、防校園欺凌”為主題組織了全校學(xué)生參加安全知識競賽,從中抽取了部分學(xué)生成績(得分為正整數(shù),滿分為100分)進行統(tǒng)計,繪制了兩幅不完整的統(tǒng)計圖,如圖所示.
(1)學(xué)校共抽取了______名學(xué)生,_____,n=______.
(2)補全頻數(shù)直方圖;
(3)該校共有2000名學(xué)生。若成績在70分以下(含70分)的學(xué)生安全意識不強,有待進一步加強安全教育,則該校安全意識不強的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長度為1個單位長度的小正方形組成的正方形中,點A、B、C在小正方形的頂點上.
(1)在圖中畫出與△ABC關(guān)于直線l成軸對稱的△AB′C′;
(2)求△ABC的面積為_______;
(3)在直線l上找一點P,使PB+PC的長最短,則這個最短長度為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖像經(jīng)過點A(0,2)和B(-1,-4).
(1)求此函數(shù)的解析式;并運用配方法,將此拋物線解析式化為的形式;
(2)寫出該拋物線頂點C的坐標,并求出△CAO的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O分別與BC、AC交于點D、E,過點D作⊙O的切線DF,交AC于點F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜邊OB=4,將Rt△OAB繞點O順時針旋轉(zhuǎn)60°,點D與點A為對應(yīng)點,畫出Rt△ODC,并連接BC.
(1)填空:∠OBC=_____°;
(2)如圖,連接AC,作OP⊥AC,垂足為P,求OP的長度是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實驗室里,水平桌面上有甲、乙、丙三個圓柱形容器(容器足夠高),底面半徑之比為1:2:1,,用兩個相同的管子在容器的5cm高度處連通(即管子底端離容器底5cm),現(xiàn)三個容器中,只有甲中有水,水位高1cm,如圖所示.若每分鐘同時向乙和丙注入相同量的水,開始注水1分鐘,乙的水位上升cm,則開始注入 分鐘的水量后,甲與乙的水位高度之差是0.5cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com