【題目】如圖,點(diǎn)P、Q是反比例函數(shù)y= 圖像上的兩點(diǎn),PA⊥y軸于點(diǎn)A,QN⊥x軸于點(diǎn)N,作PM⊥x軸于點(diǎn)M,QB⊥y軸于點(diǎn)B,連接PB、QM,△ABP的面積記為S1 , △QMN的面積記為S2 , 則S1S2 . (填“>”或“<”或“=”)

【答案】=
【解析】解;設(shè)p(a,b),Q(m,n), 則SABP= APAB= a(b﹣n)= ab﹣ an,
SQMN= MNQN= (m﹣a)n= mn﹣ an,
∵點(diǎn)P,Q在反比例函數(shù)的圖像上,
∴ab=mn=k,
∴S1=S2
【考點(diǎn)精析】關(guān)于本題考查的比例系數(shù)k的幾何意義,需要了解幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn),二次函數(shù)的對(duì)稱軸為直線,其圖象過點(diǎn)軸交于另一點(diǎn),與軸交于點(diǎn).

(1)求二次函數(shù)的解析式,寫出頂點(diǎn)坐標(biāo);

(2)動(dòng)點(diǎn)同時(shí)從點(diǎn)出發(fā),均以每秒2個(gè)單位長度的速度分別沿邊上運(yùn)動(dòng),設(shè)其運(yùn)動(dòng)的時(shí)間為秒,當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).連結(jié),將沿翻折,若點(diǎn)恰好落在拋物線弧上的處,試求的值及點(diǎn)的坐標(biāo);

(3)在(2)的條件下,QBN的中點(diǎn),試探究坐標(biāo)軸上是否存在點(diǎn),使得以為頂點(diǎn)的三角形與相似?如果存在,請(qǐng)求出點(diǎn)的坐標(biāo);如果不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是(  )

A. x3+x3=x6 B. 3x3y2÷xy2=3x4

C. x32x2=4x5 D. ﹣3a22=6a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)Q為坐標(biāo)系上任意一點(diǎn),某圖形上的所有點(diǎn)在∠Q的內(nèi)部(含角的邊),這時(shí)我們把∠Q的最小角叫做該圖形的視角.如圖1,矩形ABCD,作射線OAOB,則稱∠AOB為矩形ABCD的視角.

1如圖1,矩形ABCD,A1),B,1),C3),D,3),直接寫出視角∠AOB的度數(shù);

2)在(1)的條件下,在射線CB上有一點(diǎn)Q,使得矩形ABCD的視角∠AQB=60°,求點(diǎn)Q的坐標(biāo);

3)如圖2,P的半徑為1,點(diǎn)P1, ),點(diǎn)Qx軸上,且⊙P的視角∠EQF的度數(shù)大于60°,若Qa0),a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,第一次將△OAB交換成△OA1B1 , 第二次將△OA1B1變換成△OA2B2 , 第三次將△OA2B2變換成△OA3B3…已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).觀察每次變換前后的三角形有何變化,按照變換規(guī)律,第五次變換后得到的三角形A5的坐標(biāo)是 , B5的坐標(biāo)是 , An的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商場某種商品平均每天可銷售30件,每件盈利50元.為了盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r(jià)措施. 經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價(jià)1元,商場平均每天可多售出 2件.據(jù)此規(guī)律計(jì)算:每件商品降價(jià)
元時(shí),商場日盈利可達(dá)到2100元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,ABCD為長方形,其中點(diǎn)A、C坐標(biāo)分別為(﹣4,2)、(1,﹣4),且AD∥x軸,交y軸于M點(diǎn),AB交x軸于N.

(1)求B、D兩點(diǎn)坐標(biāo)和長方形ABCD的面積;
(2)一動(dòng)點(diǎn)P從A出發(fā),以 個(gè)單位/秒的速度沿AB向B點(diǎn)運(yùn)動(dòng),在P點(diǎn)運(yùn)動(dòng)過程中,連接MP、OP,請(qǐng)直接寫出∠AMP、∠MPO、∠PON之間的數(shù)量關(guān)系;
(3)是否存在某一時(shí)刻t,使三角形AMP的面積等于長方形面積的 ?若存在,求t的值并求此時(shí)點(diǎn)P的坐標(biāo);若不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P的坐標(biāo)為(m1,m22m3,則點(diǎn)P到直線y=-5距離的最小值為( ).

A.0.5B.1C.1.5D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算下列小題:
(1)( + 2016×( 2017
(2)( 2+

查看答案和解析>>

同步練習(xí)冊(cè)答案