【題目】在正方形ABCD中,AC為對角線,E為AC上一點,連接EB、ED.
(1)求證:△BEC≌△DEC;
(2)延長BE交AD于F,當∠BED=120°時,求∠EFD的度數(shù).

【答案】
(1)證明:∵四邊形ABCD是正方形,

∴BC=CD,∠ECB=∠ECD=45°.

∴在△BEC與△DEC中,

∴△BEC≌△DEC(SAS)


(2)解:∵△BEC≌△DEC,

∴∠BEC=∠DEC= ∠BED.

∵∠BED=120°,∴∠BEC=60°=∠AEF.

∴∠EFD=60°+45°=105°


【解析】(1)在證明△BEC≌△DEC時,根據(jù)題意知,運用SAS公理就行;(2)根據(jù)全等三角形的性質(zhì)知對應角相等,即∠BEC=∠DEC= ∠BED,又由對頂角相等、三角形的一個內(nèi)角的補角是另外兩個內(nèi)角的和求得∠EFD=∠BEC+∠CAD.
【考點精析】利用正方形的性質(zhì)對題目進行判斷即可得到答案,需要熟知正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某學校有一塊長方形活動場地,長為米,寬比長少米,實施“陽光體育”行動以后,學校為了擴大學生的活動場地,讓學生能更好地進行體育活動,將操場的長和寬都增加米.

(1)求活動場地原來的面積是多少平方米.(用含的代數(shù)式表示)

(2)若,求活動場地面積增加后比原來多多少平方米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,如圖所示,△AOB是邊長為2的等邊三角形,將△AOB繞著點B按順時針方向旋轉得到△DCB,使得點D落在x軸的正半軸上,連接OC、AD.
(1)求證:OC=AD;
(2)求OC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=﹣2x2+bx+c的圖象經(jīng)過點A(0,4)和B(1,﹣2).
(1)求此拋物線的解析式;
(2)求此拋物線的對稱軸和頂點坐標;
(3)設拋物線的頂點為C,試求△CAO的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】低碳環(huán)保,綠色出行的概念得到廣大群眾的接受,越來越多的人喜歡選擇騎自行車作為出行工具.小軍和爸爸同時騎車去圖書館,爸爸先以150/分的速度騎行一段時間,休息了5分鐘,再以m/分的速度到達圖書館.小軍始終以同一速度騎行,兩人騎行的路程為y()與時間x(分鐘)的關系如圖.請結合圖象,解答下列問題:

(1)填空:a=________;b=________;m=________.

(2)若小軍的速度是 120 /分,求小軍第二次與爸爸相遇時距圖書館的距離.

(3)(2)的條件下,爸爸自第二次出發(fā)后,騎行一段時間后與小軍相距100 米,此時 小軍騎行的時間為________分鐘.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D是△ABC的邊BC上任一點,已知AB=6,AD=3,∠DAC=∠B.若△ABD的面積為a,則△ACD的面積為(
A.a
B.
C.
D. a

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知相交直線AB和CD及另一直線MN,如果要在MN上找出與AB,CD距離相等的點,則這樣的點至少有_____個,最多有_____個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,對折矩形紙片ABCD,使AB與DC重合得到折痕EF,將紙片展平;再一次折疊,使點D落到EF上點G處,并使折痕經(jīng)過點A,展平紙片后∠DAG的大小為(
A.30°
B.45°
C.60°
D.75°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,得到下面四個結論:①OA=OD;②AD⊥EF;③當∠BAC=90°時,四邊形AEDF是正方形;④AE2+DF2=AF2+DE2 . 其中正確的是(
A.②③
B.②④
C.②③④
D.①③④

查看答案和解析>>

同步練習冊答案