【題目】如圖,已知相交直線AB和CD及另一直線MN,如果要在MN上找出與AB,CD距離相等的點,則這樣的點至少有_____個,最多有_____個.
【答案】12
【解析】
分別作∠AOD及∠AOC的平分線,由角平分線的性質(zhì)可知,到AB、CD距離相等的點必在這兩條角平分線上,由于此點在直線MN上,所以符合條件的點在這兩條角平分線與直線MN的交點上.
解:如圖所示,
分別作∠AOD及∠AOC的平分線OE與OF,
∵OE與OF分別是∠AOD及∠AOC的平分線,
∴直線OE與OF上的點到AB、CD距離相等,
∴點M必在直線OE或直線OF上,
∵點M在直線MN上,
∴點M在這兩條角平分線與直線MN的交點上,
∴當(dāng)OF或OE與MN平行時,符合條件的點有1個;
當(dāng)OF或OE均與直線MN不平行時,符合條件的點有2個.
故答案為:1,2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,第一個正方形的頂點A1(﹣1,1),B1(1,1);第二個正方形的頂點A2(﹣3,3),B2(3,3);第三個正方形的頂點A3(﹣6,6),B3(6,6)按順序取點A1,B2,A3,B4,A5,B6…,則第12個點應(yīng)取點B12,其坐標(biāo)為( 。
A. (12,12) B. (78,78) C. (66,66) D. (55,55)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實驗室里,水平桌面上有甲、乙、丙三個圓柱形容器(容器足夠高),底面半徑之比為1:2:1,,用兩個相同的管子在容器的5cm高度處連通(即管子底端離容器底5cm),現(xiàn)三個容器中,只有甲中有水,水位高1cm,如圖所示.若每分鐘同時向乙和丙注入相同量的水,開始注水1分鐘,乙的水位上升cm,則開始注入 分鐘的水量后,甲與乙的水位高度之差是0.5cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一個種植總面積為540 m2的長方形塑料溫棚,分壟間隔套種草莓和西紅柿共24壟,種植的草莓或西紅柿單種農(nóng)作物的總壟數(shù)不低于10壟,又不超過14壟(壟數(shù)為正整數(shù)),它們的占地面積、產(chǎn)量、利潤分別如下:
(1)若設(shè)草莓共種植了x壟,請說明共有幾種種植方案,分別是哪幾種;
(2)在這幾種種植方案中,哪種方案獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線a經(jīng)過正方形ABCD的頂點A,分別過正方形的頂點B、D作BF⊥a于點F,DE⊥a于點E,若DE=8,BF=5,則EF的長為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),A、E、F、C在一條直線上,AE=CF,過E、F分別作DE⊥AC,BF⊥AC,若AB=CD,試證明BD平分EF,若將△DEC的邊EC沿AC方向移動變?yōu)閳D(2)時,其余條件不變,上述結(jié)論是否成立?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八年級(1)班學(xué)生在完成課題學(xué)習(xí)“體質(zhì)健康測試中的數(shù)據(jù)分析”后,利用課外活動時間積極參加體育鍛煉,每位同學(xué)從籃球、跳繩、立定跳遠、長跑、鉛球中選一項進行訓(xùn)練,訓(xùn)練后都進行了測試.現(xiàn)將項目選擇情況及訓(xùn)練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖.
請你根據(jù)上面提供的信息回答下列問題:
(1)扇形圖中跳繩部分的扇形圓心角為度,該班共有學(xué)生人,訓(xùn)練后籃球定時定點投籃平均每個人的進球數(shù)是 .
(2)老師決定從選擇鉛球訓(xùn)練的3名男生和1名女生中任選兩名學(xué)生先進行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com