【題目】【課本引申】
我們知道,三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.那么,三角形的一個內(nèi)角與它不相鄰的兩個外角的和之間存在怎樣的數(shù)量關(guān)系呢?
【嘗試探究】
(1)如圖1,∠DBC與∠ECB分別為△ABC的兩個外角,試探究∠A與∠DBC+∠ECB之間存在怎樣的數(shù)量關(guān)系?為什么?
【拓展運用】
(2)如圖2,在△ABC紙片中剪去△CED,得到四邊形ABDE,若∠1+∠2=230°,則剪掉的∠C=_________;
(3)小明聯(lián)想到了曾經(jīng)解決的一個問題:如圖3,在△ABC中,BP、CP分別平分外角∠DBC、∠ECB,∠P與∠A有何數(shù)量關(guān)系?請直接寫出答案_ .
(4)如圖4,在四邊形ABCD中,BP、CP分別平分外角∠EBC、∠FCB,∠P與∠A、∠D有何數(shù)量關(guān)系?為什么?(若需要利用上面的結(jié)論說明,可直接使用,不需說明理由)
【答案】(1)∠DBC+∠ECB =180°+∠A (2)50°(3)∠P=90°-∠A (4)∠BAD+∠CDA=360°-2∠P.
【解析】試題分析:(1)根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和表示出∠DBC+∠ECB,再利用三角形內(nèi)角和定理整理即可得解;
(2)根據(jù)(1)的結(jié)論整理計算即可得解;
(3)表示出∠DBC+∠ECB,再根據(jù)角平分線的定義求出∠PBC+∠PCB,然后利用三角形內(nèi)角和定理列式整理即可得解;
(4)延長BA、CD相交于點Q,先用∠Q表示出∠P,再用(1)的結(jié)論整理即可得解;
試題解析:
(1)∠DBC+∠ECB=180°-∠ABC+180°-∠ACB
=360°-(∠ABC+∠ACB)
=360°-(180°-∠A)
=180°+∠A
(2)50°
(3)∠P=90°-∠A
(4)延長BA、CD交于點Q,
則∠P=90°-∠Q,∴∠Q=180°-2∠P.
∴∠BAD+∠CDA=180°+∠Q=180°+180°-2∠P=360°-2∠P.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線y=ax2+bx+3與x軸交于點A、B兩點(A在B的左側(cè))與y軸交于C點,且OA:OC=1:3,S△ABC=6.
(1)求拋物線的函數(shù)關(guān)系式;
(2)拋物線上是否存在一點D(點C除外),使S△ABD=S△ABC?若存在,求出D點坐標(biāo);若不存在,說明理由.
(3)拋物線上是否存在一點E(點B除外),使S△ACE=S△ABC?若存在,求出E點坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)|﹣2|+20090﹣(﹣)﹣1+3tan30°
(2)解不等式組:
解方程:
(3)x2+4x+1=0
(4)=﹣1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一元二次方程ax2+bx+c=0有一根為0,則下列結(jié)論正確的是( )
A.a=0
B.b=0
C.c=0
D.c≠0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點,將△ABE沿直線BE折疊后得到△GBE,延長BG交CD于點F.若AB=6,BC=10,則FD的長為( )
A. B.4 C. D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列敘述正確的個數(shù)有( )
①一個數(shù)立方根的符號與這個數(shù)的符號相同;
②正數(shù)、負(fù)數(shù)、0都有立方根;
③如果一個數(shù)的立方根是它本身,這個數(shù)一定是0;
④兩個互為相反數(shù)的數(shù),開立方所得的結(jié)果仍然互為相反數(shù);
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式中,去括號正確的是( )
A. m+(-n+x-y)=m+n+x-y B. m-(-n+x-y)=m+n+x+y
C. a-2(b+c)=a-2b+c D. a-2(b-c)=a-2b+2c
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一組數(shù)據(jù):7,a,8,b,10,c,6的平均數(shù)是4.
(1)求a,b,c的平均數(shù);
(2)求2a+1,2b+1,2c+1的平均數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com