【題目】如圖,在△ABC中,AB=AC,以AB為直徑的半圓交AC于點D,交BC于點E,延長AE至點F,使EF=AE,連接FB、FC.
(1)求證:四邊形ABFC是菱形;
(2)若AD=,BE=1,求半圓的面積.
【答案】(1)見解析;(2)半圓的面積是
【解析】
(1)由AB是直徑可得∠AEB=90°,根據(jù)等腰三角形的性質可得BE=CE,進而可得四邊形ABFC是平行四邊形,再根據(jù)菱形的定義即可證得結論;
(2)連接,如圖,設,根據(jù)勾股定理可得關于x的方程,解方程即可求出x,進一步即可求出半圓面積.
(1)證明:∵AB是直徑,
∴∠AEB=90°,即AE⊥BC,
∵AB=AC,
∴BE=CE,
∵AE=EF,
∴四邊形ABFC是平行四邊形,
∵AC=AB,
∴平行四邊形ABFC是菱形;
(2)解:連接,如圖,設,則AC=x,
∵AB是直徑,∴∠ADB=∠BDC=90°,
∴AB2﹣AD2=CB2﹣CD2,
則,
解得:(舍),,
∴半圓的面積.
答:半圓的面積是.
科目:初中數(shù)學 來源: 題型:
【題目】將一個矩形紙片放置在平面直角坐標系中,點,點,點E,F分別在邊,上.沿著折疊該紙片,使得點A落在邊上,對應點為,如圖①.再沿折疊,這時點E恰好與點C重合,如圖②.
(Ⅰ)求點C的坐標;
(Ⅱ)將該矩形紙片展開,再折疊該矩形紙片,使點O與點F重合,折痕與相交于點P,展開矩形紙片,如圖③.
①求的大。
②點M,N分別為,上的動點,當取得最小值時,求點N的坐標(直接寫出結果即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2020年春節(jié)前夕,一場突如其來的新冠肺炎疫情牽動著全國人民的心,因疫情發(fā)展迅速,全國口罩等防護用品成了年貨,供應緊張.某藥店用2000元購進某品牌的一批口罩后,供不應求,又用5000元購進這種口罩,第二批口罩的數(shù)量是第一批的2倍,但進貨單價比第一批貴2元.
(1)第一批口罩進貨單價多少元?
(2)若兩次購進口罩按同一價格銷售,兩批全部售完后,獲利不少于2000元,那么銷售單價至少為多少元?
(3)由于黨的好政策,愛心工人加班加點地生產,口罩變得不再緊俏,藥店第三批進貨單價比第一批便宜1元,若按照(2)中銷售單價出售,每天可以售出60個,藥店為了促銷,決定降低一定的價格,每降低一元,每天多售出20個,問單價定為多少時,每天利潤最大?最大是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校“心靈信箱”的設立,為師、生之間的溝通開設了一個書面交流的渠道.為了解九年級學生對“心靈信箱”開通兩年來的使用情況,某課題組對該校九年級全體學生進行了一次問卷調查,并根據(jù)調查結果繪制了如下尚不完整的統(tǒng)計圖.
根據(jù)圖表,解答以下問題:
(1)該校九年級學生共有 人;
(2)學生調查結果扇形統(tǒng)計圖中,扇形D的圓心角度數(shù)是 ;
(3)請你補充條形統(tǒng)計圖;
(4)根據(jù)調查結果可以推斷:兩年來,該校九年級學生通過“心靈信箱”投遞出的信件總數(shù)至少有 封.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,正方形OABC如圖放置,反比例函數(shù)的圖像交AB于點D,交BC于點E,已知A(,0),∠DOE=30°,則k的值為( )
A.B.C.3D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,正方形OABC如圖放置,反比例函數(shù)的圖像交AB于點D,交BC于點E,已知A(,0),∠DOE=30°,則k的值為( )
A.B.C.3D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】茶葉是安徽省主要經(jīng)濟作物之一,2020年新茶上市期間,某茶廠為獲得最大利益,根據(jù)市場行情,把新茶價格定為400元/kg,并根據(jù)歷年的相關數(shù)據(jù)整理出第x天(1≤x≤15,且x為整數(shù))制茶成本(含采摘和加工)和制茶量的相關信息如下表.假定該茶廠每天制作和銷售的新茶沒有損失,且能在當天全部售出(當天收入=日銷售額-日制茶成本)
制茶成本(元/kg) | 150+10x |
制茶量(kg) | 40+4x |
(1)求出該茶廠第10天的收入;
(2)設該茶廠第x天的收入為y(元).試求出y與x之間的函數(shù)關系式,并求出y的最大值及此時x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1的正方形中,對角線,相交于O.點.H為邊上的點,過點H作,交線段于點E,連接交于點F,交于點G.若,則的長為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com