【題目】如圖,點(diǎn)A在以BC為直徑的⊙O內(nèi),且AB=AC,以點(diǎn)A為圓心,AC長為半徑作弧,得到扇形ABC,剪下扇形ABC圍成一個(gè)圓錐(AB和AC重合),若∠BAC=120°,BC=2 ,則這個(gè)圓錐底面圓的半徑是( )

A.
B.
C.
D.

【答案】B
【解析】解:如圖,連接AO,∠BAC=120°,
∵BC=2 ,∠OAC=60°,
∴OC= ,
∴AC=2,
設(shè)圓錐的底面半徑為r,則2πr= = π,
解得:r= ,
故選B.

本題考查了圓錐的計(jì)算,解題的關(guān)鍵是能夠了解圓錐的底面周長等于展開扇形的弧長,難度不大.根據(jù)扇形的圓心角的度數(shù)和直徑BC的長確定扇形的半徑,然后確定扇形的弧長,根據(jù)圓錐的底面周長等于扇形的弧長列式求解即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,某社會(huì)實(shí)踐活動(dòng)小組實(shí)地測量兩岸互相平行的一段河的寬度,在河的南岸邊點(diǎn)A處,測得河的北岸邊點(diǎn)B在其北偏東45°方向,然后向西走60m到達(dá)C點(diǎn),測得點(diǎn)B在點(diǎn)C的北偏東60°方向,如圖2.

(1)求∠CBA的度數(shù).
(2)求出這段河的寬(結(jié)果精確到1m,備用數(shù)據(jù) ≈1.41, ≈1.73).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(﹣2,0),B(2,0),C(3,5).

(1)求過點(diǎn)A,C的直線解析式和過點(diǎn)A,B,C的拋物線的解析式;
(2)求過點(diǎn)A,B及拋物線的頂點(diǎn)D的⊙P的圓心P的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)Q,使AQ與⊙P相切,若存在請求出Q點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y1=ax+c和反比例函數(shù)y2= 的圖象如圖所示,則二次函數(shù)y3=ax2+bx+c的大致圖象是(

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】凱里市某文具店某種型號的計(jì)算器每只進(jìn)價(jià)12元,售價(jià)20元,多買優(yōu)惠,優(yōu)勢方法是:凡是一次買10只以上的,每多買一只,所買的全部計(jì)算器每只就降價(jià)0.1元,例如:某人買18只計(jì)算器,于是每只降價(jià)0.1×(18﹣10)=0.8(元),因此所買的18只計(jì)算器都按每只19.2元的價(jià)格購買,但是每只計(jì)算器的最低售價(jià)為16元.
(1)求一次至少購買多少只計(jì)算器,才能以最低價(jià)購買?
(2)求寫出該文具店一次銷售x(x>10)只時(shí),所獲利潤y(元)與x(只)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)一天,甲顧客購買了46只,乙顧客購買了50只,店主發(fā)現(xiàn)賣46只賺的錢反而比賣50只賺的錢多,請你說明發(fā)生這一現(xiàn)象的原因;當(dāng)10<x≤50時(shí),為了獲得最大利潤,店家一次應(yīng)賣多少只?這時(shí)的售價(jià)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a1= ,a2= ,a3= ,…,an+1= (n為正整數(shù),且t≠0,1),則a2016=(用含有t的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣5(a≠0)與x軸交于點(diǎn)A(﹣5,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C.

(1)求該拋物線的解析式;
(2)若點(diǎn)E為x軸下方拋物線上的一動(dòng)點(diǎn),當(dāng)SABE=SABC時(shí),求點(diǎn)E的坐標(biāo);
(3)在(2)的條件下,拋物線上是否存在點(diǎn)P,使∠BAP=∠CAE?若存在,求出點(diǎn)P的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD⊥BC,BE⊥AC,垂足分別為D、E,AD與BE相交于點(diǎn)F.
(1)求證:△ACD∽△BFD;
(2)若∠ABD=45°,AC=3時(shí),求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點(diǎn)B.C分別在邊AD、AF上,此時(shí)BD=CF,BD⊥CF成立.

(1)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請證明,若不成立,請說明理由.
(2)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長BD交CF于點(diǎn)H.
①探究BD與CF之間的位置關(guān)系,并說明理由;
②當(dāng)AB= ,AD= +1時(shí),求線段DH的長.

查看答案和解析>>

同步練習(xí)冊答案