如圖:點(diǎn)P是∠AOB內(nèi)一定點(diǎn),點(diǎn)M、N分別在邊OA、OB上運(yùn)動(dòng),若∠AOB=30°,OP=3,則△PMN的周長(zhǎng)的最小值為   
【答案】分析:設(shè)點(diǎn)P關(guān)于OA的對(duì)稱(chēng)點(diǎn)為C,關(guān)于OB的對(duì)稱(chēng)點(diǎn)為D,當(dāng)點(diǎn)M、N在CD上時(shí),△PMN的周長(zhǎng)最小.
解答:解:分別作點(diǎn)P關(guān)于OA、OB的對(duì)稱(chēng)點(diǎn)C、D,連接CD,分別交OA、OB于點(diǎn)M、N,連接OP、OC、OD、PM、PN.
∵點(diǎn)P關(guān)于OA的對(duì)稱(chēng)點(diǎn)為C,關(guān)于OB的對(duì)稱(chēng)點(diǎn)為D,
∴PM=CM,OP=OC,∠COA=∠POA;
∵點(diǎn)P關(guān)于OB的對(duì)稱(chēng)點(diǎn)為D,
∴PN=DN,OP=OD,∠DOB=∠POB,
∴OC=OD=OP=3,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,
∴△COD是等邊三角形,
∴CD=OC=OD=3
∴△PMN的周長(zhǎng)的最小值=PM+MN+PN=CM+MN+DN≥CD=3
點(diǎn)評(píng):此題主要考查軸對(duì)稱(chēng)--最短路線(xiàn)問(wèn)題,綜合運(yùn)用了等邊三角形的知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

63、如圖,點(diǎn)P是∠AOB的平分線(xiàn)上的一點(diǎn),作PD⊥OA,垂足為D,PE⊥OB垂足為E,DE交OC于點(diǎn)F.則在圖中:
(1)總共有
3
對(duì)全等三角形;
(2)總共
8
個(gè)直角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、如圖,點(diǎn)E是∠AOB的平分線(xiàn)上一點(diǎn),EC⊥OA,ED⊥OB,垂足分別為C、D.
求證:(1)∠ECD=∠EDC;
(2)OC=OD;
(3)OE是線(xiàn)段CD的垂直平分線(xiàn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、作圖題:如圖,點(diǎn)P是∠AOB內(nèi)一點(diǎn).
(1)過(guò)點(diǎn)p畫(huà)一條直線(xiàn)平行于BO;(2)過(guò)點(diǎn)P畫(huà)一條直線(xiàn)垂直于AO.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)P是∠AOB內(nèi)的一點(diǎn),過(guò)點(diǎn)P作PC∥OB,PD∥OA,分別交OA、OB于點(diǎn)C、D,且PE⊥OA,精英家教網(wǎng)PF⊥OB,垂足分別為點(diǎn)E、F.
(1)求證:OC•CE=OD•DF;
(2)當(dāng)點(diǎn)P位于∠AOB的什么位置時(shí),四邊形CODP是菱形并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)P是∠AOB內(nèi)部一點(diǎn),點(diǎn)P關(guān)于OA、OB的對(duì)稱(chēng)點(diǎn)是H、G,直線(xiàn)HG交OA、OB于點(diǎn)C、D,若HG=4cm,且∠AOB=30°,則△HOG的周長(zhǎng)是
12
12
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案