【題目】如圖1,在直角梯形ABCD中,AD∥BC,∠ADC=90°,BC= ,AD= ,CD=12,過AB的中點(diǎn)E作AB的垂線交BC的延長線于F.
(1)求BF的長;
(2)如圖2,以點(diǎn)C為原點(diǎn),建立平面直角坐標(biāo)系,請通過計(jì)算判斷,過E點(diǎn)的反比例函數(shù)圖象與直線AB是否還有另一個交點(diǎn)?

【答案】
(1)解:作AG⊥BC于G,則AG=CD=12,BG=BC﹣AD=9,

在Rt△ABG中,AB= =15,

∴BE= AB=

∵∠ABG=∠FBE,∠AGB=∠FEB,

∴△ABG∽△FBE,

= ,

得BF= =


(2)解:作EH⊥BC于H,則EH=6,

∴CH=6,

點(diǎn)E的坐標(biāo)是(﹣6,6),

點(diǎn)B的坐標(biāo)是(﹣ ,0),

設(shè)直線AB的解析式為y=kx+b,則

解得: ,

∴直線AB的解析式為y= x+14.

設(shè)反比例函數(shù)的解析式為y= ,

將E點(diǎn)坐標(biāo)代入得,k1=﹣36.

∴過E點(diǎn)的反比例函數(shù)解析式為y=﹣

由﹣ = x+14,

解得:x1=﹣6,x2=﹣

∴過E點(diǎn)的反比例函數(shù)圖象與直線AB還有另一個交點(diǎn)


【解析】(1)作AG⊥BC于G,在直角△AG中利用勾股定理求得AB的長,然后證明△ABG∽△FBE,利用相似三角形的性質(zhì)求解;(2)作EH⊥BC于H,求得直線AB的解析式,然后解反比例函數(shù)和一次函數(shù)的解析式組成的方程組求解.
【考點(diǎn)精析】本題主要考查了直角梯形和相似三角形的判定與性質(zhì)的相關(guān)知識點(diǎn),需要掌握一腰垂直于底的梯形是直角梯形;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動點(diǎn)A從原點(diǎn)出發(fā)向數(shù)軸負(fù)方向運(yùn)動,同時,動點(diǎn)B也從原點(diǎn)出發(fā)向數(shù)軸正方向運(yùn)動,3s后,兩點(diǎn)相距15個單位長度.已知動點(diǎn)AB的速度比是1:4(速度單位:單位長度/s).

1)求出兩個動點(diǎn)運(yùn)動的速度,并在數(shù)軸上標(biāo)出A、B兩點(diǎn)從原點(diǎn)出發(fā)運(yùn)動3s時的位置;

2)若A、B兩點(diǎn)從(1)中的位置同時向數(shù)軸負(fù)方向運(yùn)動,幾秒時,原點(diǎn)恰好處在兩個動點(diǎn)的正中間?

3)在(2)中原點(diǎn)恰好處在兩個動點(diǎn)的正中間時,A、B兩點(diǎn)同時向數(shù)軸負(fù)方向運(yùn)動,另一動點(diǎn)C和點(diǎn)B同時從點(diǎn)B位置出發(fā)向A運(yùn)動,當(dāng)遇到A后,立即返回向點(diǎn)B運(yùn)動,遇到點(diǎn)B后又立即返回向點(diǎn)A運(yùn)動,如此往返,直到B追上A時,C立即停止運(yùn)動.若點(diǎn)C一直以20單位長度/s的速度勻速運(yùn)動,那么點(diǎn)C從開始運(yùn)動到停止運(yùn)動,行駛的路程是多少個單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿MN折疊,使點(diǎn)B與點(diǎn)D重合.
(1)求證:DM=DN;
(2)當(dāng)AB和AD滿足什么數(shù)量關(guān)系時,△DMN是等邊三角形?并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列汽車標(biāo)志中即是軸對稱圖形又是中心對稱圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的袋中,有若干個白色乒乓球和4個黃色乒乓球,每次將球攪拌均勻后,任意摸出一個球記下顏色再放回袋中,通過大量重復(fù)摸球?qū)嶒?yàn)后發(fā)現(xiàn),摸到黃球的頻率穩(wěn)定在40%,那么,估計(jì)袋中白色乒乓球的個數(shù)為(
A.6
B.8
C.10
D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E,CBF上,,,

求證:

ACDEM,且,將線段CE繞點(diǎn)C順時針旋轉(zhuǎn),使點(diǎn)E旋轉(zhuǎn)到AB上的G處,求旋轉(zhuǎn)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店在節(jié)日期間開展優(yōu)惠促銷活動:購買原價超過200元的商品,超過200元的部分可以享受打折優(yōu)惠,若購買商品的實(shí)際付款金額y(單位:元)與商品原價x(單位:元)的函數(shù)關(guān)系的圖象如圖所示,則超過200元的部分可以享受的優(yōu)惠是( 。

A. 打五折 B. 打六折 C. 打七折 D. 打八折

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以直線AB上一點(diǎn)O為端點(diǎn)作射線 OC使BOC=60°,將一個直角三角形的直角頂點(diǎn)放在點(diǎn)O處.(注:∠DOE=90°)

(1)如圖1,若直角三角板DOE的一邊OD放在射線OB,COE= °;

(2)如圖2,將直角三角板DOE繞點(diǎn)O逆時針方向轉(zhuǎn)動到某個位置OE恰好平分AOC,請說明OD所在射線是BOC的平分線

(3)如圖3,將三角板DOE繞點(diǎn)O逆時針轉(zhuǎn)動到某個位置時,若恰好COD= AOE,BOD的度數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC=AD

1)作∠A的平分線交CDE;

2)過BCD的垂線,垂足為F

3)請寫出圖中兩對全等三角形(不添加任何字母),并選擇其中一對加以證明.

查看答案和解析>>

同步練習(xí)冊答案