【題目】如圖1,二次函數(shù)的圖像與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn).
(1)求二次函數(shù)的表達(dá)式及點(diǎn)、點(diǎn)的坐標(biāo);
(2)若點(diǎn)在二次函數(shù)圖像上,且,求點(diǎn)的橫坐標(biāo);
(3)將直線向下平移,與二次函數(shù)圖像交于兩點(diǎn)(在左側(cè)),如圖2,過(guò)作軸,與直線交于點(diǎn),過(guò)作軸,與直線交于點(diǎn),當(dāng)的值最大時(shí),求點(diǎn)的坐標(biāo).
【答案】(1)y=,A(﹣1,0),B(4,0);(2)D點(diǎn)的橫坐標(biāo)為2+2,2﹣2,2;(3)M(,﹣)
【解析】
(1)求出a,即可求解;
(2)求出直線BC的解析式,過(guò)點(diǎn)D作DH∥y軸,與直線BC交于點(diǎn)H,根據(jù)三角形面積的關(guān)系求解;
(3)過(guò)點(diǎn)M作MG∥x軸,交FN的延長(zhǎng)線于點(diǎn)G,設(shè)M(m,m2﹣m﹣3),N(n,n2﹣n﹣3),判斷四邊形MNFE是平行四邊形,根據(jù)ME=NF,求出m+n=4,再確定ME+MN=﹣m2+3m+5﹣m=﹣(m﹣)2+,即可求M;
(1)y=ax2﹣3ax﹣4a與y軸交于點(diǎn)C(0,﹣3),
∴a=,
∴y=x2﹣x﹣3,
與x軸交點(diǎn)A(﹣1,0),B(4,0);
(2)設(shè)直線BC的解析式為y=kx+b,
∴,
∴,
∴y=x﹣3;
過(guò)點(diǎn)D作DH∥y軸,與直線BC交于點(diǎn)H,
設(shè)H(x,x﹣3),D(x,x2﹣x﹣3),
∴DH=|x2﹣3x|,
∵S△ABC=,
∴S△DBC==6,
∴S△DBC=2×|x2﹣3x|=6,
∴x=2+2,x=2﹣2,x=2;
∴D點(diǎn)的橫坐標(biāo)為2+2,2﹣2,2;
(3)過(guò)點(diǎn)M作MG∥x軸,交FN的延長(zhǎng)線于點(diǎn)G,
設(shè)M(m,m2﹣m﹣3),N(n,n2﹣n﹣3),
則E(m,m﹣3),F(n,n﹣3),
∴ME=﹣m2+3m,NF=﹣n2+3n,
∵EF∥MN,ME∥NF,
∴四邊形MNFE是平行四邊形,
∴ME=NF,
∴﹣m2+3m=﹣n2+3n,
∴m+n=4,
∴MG=n﹣m=4﹣2m,
∴∠NMG=∠OBC,
∴cos∠NMG=cos∠OBC=,
∵B(4,0),C(0,﹣3),
∴OB=4,OC=3,
在Rt△BOC中,BC=5,
∴MN=(n﹣m)=(4﹣2m)=5﹣m,
∴ME+MN=﹣m2+3m+5﹣m=﹣(m﹣)2+,
∵﹣<0,
∴當(dāng)m=時(shí),ME+MN有最大值,
∴M(,﹣)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:有一個(gè)內(nèi)角為90°,且對(duì)角線相等的四邊形稱為準(zhǔn)矩形.
(1)①如圖1,準(zhǔn)矩形ABCD中,∠ABC=90°,若AB=2,BC=3,則BD= ;
②如圖2,直角坐標(biāo)系中,A(0,3),B(5,0),若整點(diǎn)P使得四邊形AOBP是準(zhǔn)矩形,則點(diǎn)P的坐標(biāo)是 ;(整點(diǎn)指橫坐標(biāo)、縱坐標(biāo)都為整數(shù)的點(diǎn))
(2)如圖3,正方形ABCD中,點(diǎn)E、F分別是邊AD、AB上的點(diǎn),且CF⊥BE,求證:四邊形BCEF是準(zhǔn)矩形;
(3)已知,準(zhǔn)矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,當(dāng)△ADC為等腰三角形時(shí),請(qǐng)直接寫出這個(gè)準(zhǔn)矩形的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,男生樓在女生樓的左側(cè),兩樓高度均為90m,樓間距為AB,冬至日正午,太陽(yáng)光線與水平面所成的角為,女生樓在男生樓墻面上的影高為CA;春分日正午,太陽(yáng)光線與水平面所成的角為,女生樓在男生樓墻面上的影高為DA,已知.
求樓間距AB;
若男生樓共30層,層高均為3m,請(qǐng)通過(guò)計(jì)算說(shuō)明多少層以下會(huì)受到擋光的影響?參考數(shù)據(jù):,,,,,
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正六邊形ABCDEF的邊長(zhǎng)為2cm,點(diǎn)P為六邊形內(nèi)任一點(diǎn).則點(diǎn)P到各邊距離之和為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年4月22日是第50個(gè)世界地球日,某校在八年級(jí)5個(gè)班中,每班各選拔10名學(xué)生參加“環(huán)保知識(shí)競(jìng)賽”并評(píng)出了一、二、三等獎(jiǎng)各若干名,學(xué)校將獲獎(jiǎng)情況繪成如圖所示的不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中信息解答下列問(wèn)題:
(1)求本次競(jìng)賽獲獎(jiǎng)的總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求扇形統(tǒng)計(jì)圖中“二等獎(jiǎng)”所對(duì)應(yīng)扇形的圓心角度數(shù);
(3)已知甲、乙、丙、丁4位同學(xué)獲得一等獎(jiǎng),學(xué)校將采取隨機(jī)抽簽的方式在4人中選派2人參加上級(jí)團(tuán)委組織的“愛(ài)護(hù)環(huán)境、保護(hù)地球”知識(shí)競(jìng)賽,請(qǐng)求出抽到的2人恰好是甲和乙的概率(用畫樹狀圖或列表等方法求解).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】自我省深化課程改革以來(lái),某校開設(shè)了:A.利用影長(zhǎng)求物體高度,B.制作視力表,C.設(shè)計(jì)遮陽(yáng)棚,D.制作中心對(duì)稱圖形,四類數(shù)學(xué)實(shí)踐活動(dòng)課.規(guī)定每名學(xué)生必選且只能選修一類實(shí)踐活動(dòng)課,學(xué)校對(duì)學(xué)生選修實(shí)踐活動(dòng)課的情況進(jìn)行抽樣調(diào)查,將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)圖中信息解決下列問(wèn)題:
(1)本次共調(diào)查名學(xué)生,扇形統(tǒng)計(jì)圖中B所對(duì)應(yīng)的扇形的圓心角為度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)選修D類數(shù)學(xué)實(shí)踐活動(dòng)的學(xué)生中有2名女生和2名男生表現(xiàn)出色,現(xiàn)從4人中隨機(jī)抽取2人做校報(bào)設(shè)計(jì),請(qǐng)用列表或畫樹狀圖法求所抽取的兩人恰好是1名女生和1名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有下列5個(gè)結(jié)論:①abc<0;②4a+2b+c>0;③b2-4ac<0;④b>a+c;⑤a+2b+c>0,其中正確的結(jié)論有( 。
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,使點(diǎn)的對(duì)應(yīng)點(diǎn)恰好落在邊上,點(diǎn)的對(duì)應(yīng)點(diǎn)為,連接.下列結(jié)論一定正確的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,∠ABC=45°,AB=7,BC=17,以AC為斜邊在△ABC外作等腰Rt△ACD,連接BD,則BD的長(zhǎng)為___.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com