【題目】已知,如圖,點(diǎn)D△ABC的邊AB的中點(diǎn),四邊形BCED是平行四邊形,

(1)求證:四邊形ADCE是平行四邊形;

(2)當(dāng)△ABC滿足什么條件時,平行四邊形ADCE是矩形?

【答案】見解析

【解析】試題分析證明是平行四邊形的方法有很多,此題用一組對邊平行且相等較為簡單,在平行四邊形的基礎(chǔ)上只需一個角是直角即可.

試題解析證明:(1四邊形BCED是平行四邊形BD=CEBDCE.又∵DABC的邊AB的中點(diǎn),AD=BD,DA=CE.又∵DACE四邊形ADCE是平行四邊形.

2)當(dāng)ABC為等腰三角形且AC=BC,四邊形ADCE是矩形證明如下

AC=BC,DABC的邊AB的中點(diǎn),CDAD,∴∠CDA=90°四邊形ADCE是平行四邊形,四邊形ADCE是矩形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1E是等邊三角形ABC的邊AB所在直線上一點(diǎn),D是邊BC所在直線上一點(diǎn),且DC不重合,若EC=ED.則稱D為點(diǎn)C關(guān)于等邊三角形ABC的反稱點(diǎn),點(diǎn)E稱為反稱中心.
在平面直角坐標(biāo)系xOy中,
1)已知等邊三角形AOC的頂點(diǎn)C的坐標(biāo)為(20),點(diǎn)A在第一象限內(nèi),反稱中心E在直線AO上,反稱點(diǎn)D在直線OC上.
①如圖2,若E為邊AO的中點(diǎn),在圖中作出點(diǎn)C關(guān)于等邊三角形AOC的反稱點(diǎn)D,并直接寫出點(diǎn)D的坐標(biāo):___.
②若AE=2,求點(diǎn)C關(guān)于等邊三角形AOC的反稱點(diǎn)D的坐標(biāo);
2)若等邊三角形ABC的頂點(diǎn)為Bn,0),Cn+1,0),反稱中心E在直線AB上,反稱點(diǎn)D在直線BC上,且2≤AE3.請直接寫出點(diǎn)C關(guān)于等邊三角形ABC的反稱點(diǎn)D的橫坐標(biāo)t的取值范圍:P_____(用含n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,現(xiàn)有一張邊長為4的正方形紙片,點(diǎn)P為正方形AD邊上的一點(diǎn)(不與點(diǎn)A、點(diǎn)D重合)將正方形紙片折疊,使點(diǎn)B落在P處,點(diǎn)C落在G處,PGDCH,折痕為EF,連接BP、BH

1)求證:∠APB=∠BPH

2)當(dāng)點(diǎn)P在邊AD上移動時,△PDH的周長是否發(fā)生變化?并證明你的結(jié)論;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,M,N分別是邊AD,BC的中點(diǎn),E,F(xiàn)分別是線段BM,CM的中點(diǎn).

(1)求證:△ABM≌△DCM;

(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;

(3)當(dāng)四邊形MENF是正方形時,求AD:AB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b是任意兩個不等實(shí)數(shù),我們規(guī)定:滿足不等式a≤x≤b的實(shí)數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對于一個函數(shù),如果它的自變量x與函數(shù)值y滿足:當(dāng)m≤x≤n時,有m≤y≤n,我們就稱此函數(shù)是閉區(qū)間[m,n]上的“閉函數(shù)”.如函數(shù)y=﹣x+4,當(dāng)x=1時,y=3;當(dāng)x=3時,y=1,即當(dāng)1≤x≤3時,恒有1≤y≤3,所以說函數(shù)y=﹣x+4是閉區(qū)間[1,3]上的“閉函數(shù)”,同理函數(shù)y=x也是閉區(qū)間[1,3]上的“閉函數(shù)”.

(1)反比例函數(shù)y=是閉區(qū)間[1,2018]上的“閉函數(shù)”嗎?請判斷并說明理由;

(2)如果已知二次函數(shù)y=x2﹣4x+k是閉區(qū)間[2,t]上的“閉函數(shù)”,求k和t的值;

3)如果(2)所述的二次函數(shù)的圖象交y軸于C點(diǎn),A為此二次函數(shù)圖象的頂點(diǎn),B為直線x=1上的一點(diǎn),當(dāng)ABC為直角三角形時,寫出點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有甲乙兩名采購員去同一家飼料公司分別購買兩次飼料,兩次購買飼料價(jià)格分別為m/千克和n/千克,且m≠n,兩名采購員的采購方式也不同,其中甲每次購買1000千克,乙每次用去800元,而不管購買多少飼料.

(1)甲、乙所購飼料的平均單價(jià)各是多少?(用字母m、n表示)

(2)誰的購貨方式更合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:如圖1,在ABC看,把AB點(diǎn)A順時針旋轉(zhuǎn)α(0°<α<180°)得到AB',把AC繞點(diǎn)A逆時針旋轉(zhuǎn)β得到AC',連接B'C'.當(dāng)α+β=180°時,我們稱A'B'C'ABC旋補(bǔ)三角形”,AB'C'B'C'上的中線AD叫做ABC旋補(bǔ)中線,點(diǎn)A叫做旋補(bǔ)中心”.

特例感知:

(1)在圖2,圖3中,AB'C'ABC旋補(bǔ)三角形”,ADABC旋補(bǔ)中線”.

①如圖2,當(dāng)ABC為等邊三角形時,ADBC的數(shù)量關(guān)系為AD=   BC;

②如圖3,當(dāng)∠BAC=90°,BC=8時,則AD長為   

猜想論證:

(2)在圖1中,當(dāng)ABC為任意三角形時,猜想ADBC的數(shù)量關(guān)系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為全力助推句容建設(shè),大力發(fā)展句容旅游,某公司擬派A、B兩個工程隊(duì)共同建設(shè)某區(qū)域的綠化帶.已知A工程隊(duì)2人與B工程隊(duì)3人每天共完成310米綠化帶,A工程隊(duì)的5人與B工程隊(duì)的6人每天共完成700米綠化帶

(1)求A隊(duì)每人每天和B隊(duì)每人每天各完成多少米綠化帶;

(2)該公司決定派A、B工程隊(duì)共20人參與建設(shè)綠化帶,若每天完成綠化帶總量不少于1480米,且B工程至少派出2人,則有哪幾種人事安排方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A(1,a是反比例函數(shù)的圖象上一點(diǎn)直線與反比例函數(shù)的圖象的交點(diǎn)為點(diǎn)B、DB(3,﹣1),

(1)求反比例函數(shù)的解析式;

(2)求點(diǎn)D坐標(biāo)并直接寫出y1y2x的取值范圍;

(3)動點(diǎn)Px,0)x軸的正半軸上運(yùn)動當(dāng)線段PA與線段PB之差達(dá)到最大時,求點(diǎn)P的坐標(biāo)

查看答案和解析>>

同步練習(xí)冊答案