【題目】如圖1,某人用一張面積為S的三角形紙片ABC剪出一個△EFP,記△EFP的面積為T,已知E、F、P分別是△ABC三邊上的三點,且EF∥BC.
(1)如圖2,當P與B重合,設(shè)分別等于、、時,△PEF的面積分別為、、.
① = ,= ,= ;
② 寫出的求解過程;
(2)如圖3,當點P是△ABC邊BC上的任意一點時(點P可與B或C重合),設(shè), 試求出與、S的函數(shù)關(guān)系式;
(3)請?zhí)骄?/span>T是否存在最大值,若存在,請求出這個最大值;若不存在,請說明理由.
【答案】(1)①S,,;②見解析;(2),理由見解析;(3)T存在最大值,當k=時,.
【解析】(1)由等高可推出面積比等于底邊之比,進而推出三角形面積;
(2)點P在BC上的任意一處,連BF,由EF∥BC,得△BEF與同高等底,因此,由(1)可知:△AEF∽△ABC,可得︰S=︰1,即=S·,
由AE︰AB=k︰1,得AE︰BE=k︰(1-k),故︰=k︰(1-k),即k·=(1-k)·,所以k︰T=((1-k)S,化簡可得.
(3) 由(2)可知T=-(-k)S,求拋物線的頂點坐標可得.
解:(1)①=S,=,=S;
②如圖∵EF∥BC,
∴∠AEF=∠ABC,∠A=∠A,
∴△AEF∽△ABC,
又∵,
∴,
∴=S.過F作FD⊥AB于D,
∵FD·BE,,
由于AE︰AB=3︰4,
∴AE︰BE=3︰1,
∴,
∴=,=S.
(2)當時,,理由如下:
如圖,點P在BC上的任意一處,連BF,
∴EF∥BC,△BEF與同高等底,
∴,
由(1)可知:△AEF∽△ABC,
設(shè)AE︰AB=k︰1,
︰S=︰1,
∴=S·.
又∵AE︰AB=k︰1,則AE︰BE=k︰(1-k),
︰=k︰(1-k),k·=(1-k)·,k︰T=((1-k)S
T=(1-k)kS即T=-(-k)S;
(3)由(2)可知T=-(-k)S=-(-k+-)S=-S(k-)+,
∴T存在最大值,當k=時,.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)(發(fā)現(xiàn))如圖①,已知等邊△ABC,將直角三角板的60°角頂點D任意放在BC邊上(點D不與點B、C重合),使兩邊分別交線段AB、AC于點E、F.
①若AB=6,AE=4,BD=2,則CF =________;
②求證:△EBD∽△DCF.
(2)(思考)若將圖①中的三角板的頂點D在BC邊上移動,保持三角板與邊AB、AC的兩個交點E、F都存在,連接EF,如圖②所示.問點D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,請說明理由.
(3)(探索)如圖③,在等腰△ABC中,AB=AC,點O為BC邊的中點,將三角形透明紙板的一個頂點放在點O處(其中∠MON=∠B),使兩條邊分別交邊AB、AC于點E、F(點E、F均不與△ABC的頂點重合),連接EF.設(shè)∠B=α,則△AEF與△ABC的周長之比為________(用含α的表達式表示)
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】不透明的口袋里裝有紅、黃、藍三種顏色的小球(除顏色不同外,其它都一樣),其中紅球2個,藍球1個,現(xiàn)在從中任意摸出一個紅球的概率為.
(1)求袋中黃球的個數(shù);
(2)第一次摸出一個球(不放回),第二次再摸出一個球,請用樹狀圖或列表法求兩次摸出的都是紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+4與x軸、y軸分別交于點A、B、C是線段AB上一點,四邊形OADC是菱形,則OD的長為( 。
A. 4.2B. 4.8C. 5.4D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某學(xué)校的教室多媒體投影儀E正對投影幕布AB的中央,其距離EG = 3.60米.為了方便課堂教學(xué)與使用,現(xiàn)將投影幕布由黑板正中AB的位置調(diào)整到左面BC的位置處,測得米,,此時投影儀E調(diào)整到線段EB上的點F處且恰好正對投影幕布BC的中央.若投影儀與投影幕布的安裝距離控制在3.45米到3.65米之間效果最好,則調(diào)整后的投影儀F與投影幕布BC之間的距離是否符合要求?請通過計算加以說明.
(參考數(shù)據(jù): ,結(jié)果精確到0.01)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點其中滿足:.
(1)
(2)在坐標平面內(nèi),將△ABC平移,點A的對應(yīng)點為點D,點B的對應(yīng)點為點E,點C的對應(yīng)點為點F,若平移后E、F兩點都在坐標軸上,請直接寫出點E的坐標;
(3)若在△ABC內(nèi)部的軸上存在一點P,在(2)的平移下,點P的對應(yīng)點為點Q,使得△APQ的面積為10,則點P的坐標為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某年級共有300名學(xué)生.為了解該年級學(xué)生A,B兩門課程的學(xué)習(xí)情況,從中隨機抽取60名學(xué)生進行測試,獲得了他們的成績(百分制),并對數(shù)據(jù)(成績)進行整理、描述和分析.下面給出了部分信息.
.A課程成績的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:,,,,,);
.A課程成績在這一組是:
70 71 71 71 76 76 77 78 79 79 79
.A,B兩門課程成績的平均數(shù)、中位數(shù)、眾數(shù)如下:
課程 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
A | |||
B | 70 | 83 |
根據(jù)以上信息,回答下列問題:
(1)寫出表中的值;
(2)在此次測試中,某學(xué)生的A課程成績?yōu)?/span>76分,B課程成績?yōu)?/span>71分,這名學(xué)生成績排名更靠前的課程是________(填“A”或“B”),理由是_______;
(3)假設(shè)該年級學(xué)生都參加此次測試,估計A課程成績超過分的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種蔬菜的銷售單價y1與銷售月份x之間的關(guān)系如圖1所示,成本y2與銷售月份x之間的關(guān)系如圖2所示(圖1的圖象是線段,圖2的圖象是拋物線)
(1)已知6月份這種蔬菜的成本最低,此時出售每千克的收益是多少元?(收益=售價﹣成本)
(2)哪個月出售這種蔬菜,每千克的收益最大?簡單說明理由.
(3)已知市場部銷售該種蔬菜4、5兩個月的總收益為22萬元,且5月份的銷售量比4月份的銷售量多2萬千克,求4、5兩個月的銷售量分別是多少萬千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解下列方程:(1)3x2-5x+2=0;(2)(7x+3)2=2(7x+3);
(3)t2-t-=0;(4)(y+1)(y-1)=2y-1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com