【題目】如圖,已知AB是⊙O的直徑,PBA延長線上一點(diǎn),PC切⊙O于點(diǎn)C,CG是⊙O的弦,CGAB,垂足為D.

(1)求證:∠PCA=ABC.

(2)過點(diǎn)AAEPC交⊙O于點(diǎn)E,交CD于點(diǎn)F,連接BE,若cosP=,CF=10,求BE的長

【答案】(1)證明見解析;(2)BE=24.

【解析】1)連接半徑OC,根據(jù)切線的性質(zhì)得:OCPC,由圓周角定理得:∠ACB=90°,所以∠PCA=OCB,再由同圓的半徑相等可得:∠OCB=ABC,從而得結(jié)論;

2)先證明∠CAF=ACF,則AF=CF=10,根據(jù)cosP=cosFAD=,可得AD=8,FD=6,得CD=CF+FD=16,設(shè)OC=rOD=r8,根據(jù)勾股定理列方程可得r的值,再由三角函數(shù)cosEAB=,可得AE的長,從而計(jì)算BE的長.

詳解:證明:(1)連接OC,交AEH,

PC是⊙O的切線,

OCPC,

∴∠PCO=90°

∴∠PCA+ACO=90°,

AB是⊙O的直徑,

∴∠ACB=90°,

∴∠ACO+OCB=90°,

∴∠PCA=OCB,

OC=OB,

∴∠OCB=ABC,

∴∠PCA=ABC;

2)∵AEPC,

∴∠CAF=PCA,

ABCG,

,

∴∠ACF=ABC,

∵∠ABC=PCA,

∴∠CAF=ACF,

AF=CF=10,

AEPC,

∴∠P=FAD

cosP=cosFAD=,

RtAFD中,cosFAD=AF=10,

AD=8,

FD==6

CD=CF+FD=16,

RtOCD中,設(shè)OC=r,OD=r8,

r2=r82+162,

r=20,

AB=2r=40,

AB是直徑,

∴∠AEB=90°

RtAEB中,cosEAB=,AB=40

AE=32,

BE==24

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017四川省涼山州,第24題,8分)為了推進(jìn)我州校園籃球運(yùn)動(dòng)的發(fā)展,2017年四川省中小學(xué)生男子籃球賽于2月在西昌成功舉辦.在此期間,某體育文化用品商店計(jì)劃一次性購進(jìn)籃球和排球共60個(gè),其進(jìn)價(jià)與售價(jià)間的關(guān)系如下表:

(1)商店用4200元購進(jìn)這批籃球和排球,求購進(jìn)籃球和排球各多少個(gè)?

(2)設(shè)商店所獲利潤為y(單位:元),購進(jìn)籃球的個(gè)數(shù)為x(單位:個(gè)),請寫出yx之間的函數(shù)關(guān)系式(不要求寫出x的取值范圍);

(3)若要使商店的進(jìn)貨成本在4300元的限額內(nèi),且全部銷售完后所獲利潤不低于1400元,請你列舉出商店所有進(jìn)貨方案,并求出最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知P1,2).

1)在平面直角坐標(biāo)系中描出點(diǎn)P(保留畫圖痕跡);

2)如果將點(diǎn)P向左平移3個(gè)單位長度,再向上平移1個(gè)單位長度得到點(diǎn)P',則點(diǎn)P'的坐標(biāo)為 

3)點(diǎn)A在坐標(biāo)軸上,若SOAP2,直接寫出滿足條件的點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AB上一點(diǎn),點(diǎn)DBC的中點(diǎn),且AB18cm,AC4CD

1)圖中共有   條線段;

2)求AC的長;

3)若點(diǎn)E在直線AB上,且EA2cm,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上有A,B兩點(diǎn),分別表示﹣4020,甲、乙兩只螞蟻分別從A,B兩點(diǎn)同時(shí)出發(fā),甲沿線段AB方向以3個(gè)單位長度/秒的速度向右運(yùn)動(dòng),甲到達(dá)點(diǎn)B處時(shí)運(yùn)動(dòng)停止;乙沿線段BA方向以5個(gè)單位長度/秒的速度向左運(yùn)動(dòng).

1)求甲、乙第一次相遇點(diǎn)所表示的數(shù).

2)求經(jīng)過多少秒時(shí),甲、乙相距28個(gè)單位長度?

3)若乙到達(dá)A點(diǎn)后立刻掉頭追趕甲(速度保持不變),則在甲到達(dá)B點(diǎn)前,甲、乙是否還能再次相遇?若能,求出相遇點(diǎn)所表示的數(shù);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中,ABAC

1)如圖1,在ADE中,若ADAE,且∠DAE=∠BAC,求證:CDBE;

2)如圖2,在ADE中,若∠DAE=∠BAC60°,且CD垂直平分AE,AD6,CD8,求BD的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商家計(jì)劃平均每天銷售滑板車100輛,但實(shí)際的銷售量與計(jì)劃量有出入,下表是某周的銷售情況(超額記為正,不足記為負(fù)):

星期

與計(jì)劃數(shù)的差值

1)根據(jù)記錄的數(shù)據(jù)可知該商家前三天共銷售滑板車______輛;(直接寫答案)

2)根據(jù)記錄的數(shù)據(jù)可知銷售量最多的一天比銷售量最少的-天多銷售多少輛?

3)本周實(shí)際銷售量是多少?

4)該商家實(shí)行每周計(jì)件工資制,每銷售一輛車可得40元,若超額完成任務(wù),則超過部分每輛另獎(jiǎng)20元,少銷售一輛扣25元,那么該商家的銷售人員這一周的工資總額是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(﹣2,0),B(4,0),拋物線y=ax2+bx﹣1A、B兩點(diǎn),并與過A點(diǎn)的直線y=﹣x﹣1交于點(diǎn)C.

(1)求拋物線解析式及對稱軸;

(2)在拋物線的對稱軸上是否存在一點(diǎn)P,使四邊形ACPO的周長最。咳舸嬖,求出點(diǎn)P的坐標(biāo),若不存在,請說明理由;

(3)點(diǎn)My軸右側(cè)拋物線上一點(diǎn),過點(diǎn)M作直線AC的垂線,垂足為N.問:是否存在這樣的點(diǎn)N,使以點(diǎn)M、N、C為頂點(diǎn)的三角形與AOC相似,若存在,求出點(diǎn)N的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面推理過程:

如圖,已知∠1 =∠2,∠B =∠C,可推得ABCD.理由如下:

∵∠1 =∠2(已知),

且∠1 =∠CGD______________________ ),

∴∠2 =∠CGD(等量代換).

CEBF___________________________).

∴∠ =∠C__________________________).

又∵∠B =∠C(已知),

∴∠ =∠B(等量代換).

ABCD________________________________.

查看答案和解析>>

同步練習(xí)冊答案