【題目】如圖,正方形ABCD的兩個(gè)頂點(diǎn)A , D分別在x軸和y軸上,CE⊥y軸于點(diǎn)E , OA=2,∠ODA=30°.若反比例函數(shù)y= 的圖象過CE的中點(diǎn)F , 則k的值為 .
【答案】6+2
【解析】
解:在正方形ABCD中,AD=CD , ∠CDA=90度,
則∠ADO+∠CDE=90度,
又因?yàn)椤螦DO+∠OAD=90度,
所以∠CDE=∠OAD ,
在△ADO和△DCE中,
∠CED=∠AOD , ∠CDE=∠OAD , AD=CD ,
所以△ADO△DCE(AAS),
所以DO=CE , AO=DE ,
在Rt△ADO中,因?yàn)?/span>OA=2 , ∠ODA=30° .
所以DO=OA=2 , AD=2OA=4 ,
則OE=DO+DE=DO+AO=2+2 ,
即C(2 , 2+2),
因?yàn)镕是CE的中點(diǎn),且CE//x軸,
所以F( , 2+2),
將F( , 2+2),代入反比例函數(shù) ,
得k=(2+2).
所以答案是6+2。
【考點(diǎn)精析】通過靈活運(yùn)用正方形的性質(zhì),掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知反比例函數(shù)y=與一次函數(shù)y=k2x+b的圖象交于點(diǎn)A(1,8)、B(﹣4,m).
(1)求k1、k2、b的值;
(2)求△AOB的面積;
(3)若M(x1 , y1)、N(x2 , y2)是反比例函數(shù)y=圖象上的兩點(diǎn),且x1<x2 , y1<y2 , 指出點(diǎn)M、N各位于哪個(gè)象限,并簡(jiǎn)要說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】嘉淇準(zhǔn)備完成題目:化簡(jiǎn):,發(fā)現(xiàn)系數(shù)“”印刷不清楚.
(1)他把“”猜成3,請(qǐng)你化簡(jiǎn):(3x2+6x+8)–(6x+5x2+2);
(2)他媽媽說(shuō):“你猜錯(cuò)了,我看到該題標(biāo)準(zhǔn)答案的結(jié)果是常數(shù).”通過計(jì)算說(shuō)明原題中“”是幾?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點(diǎn),E、F分別是線段BM、CM的中點(diǎn).
(1)求證:△ABM≌△DCM;
(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在直角三角形ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,可知:∠BAD=∠C(不需要證明);
(1)如圖②,∠MAN=90°,射線AE在這個(gè)角的內(nèi)部,點(diǎn)B、C分別在∠MAN的邊AM、AN上,且AB=AC,CF⊥AE于點(diǎn)F,BD⊥AE于點(diǎn)D.求證:△ABD≌△CAF;
(2)如圖③,點(diǎn)B、C分別在∠MAN的邊AM、AN上,點(diǎn)E、F在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE與△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求證:△ABE≌△CAF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC的頂點(diǎn)B在反比例函數(shù) 的圖象上,AC邊在x軸上,已知∠ACB=90°,∠A=30°,BC=4,則圖中陰影部分的面積是( )
A.12
B.4
C.12-3
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,在Rt△ABC和Rt△A'B'C'中,AB=A'B',AC=A'C',C=∠C'=90°.
求證:Rt△ABC和Rt△A'B'C'全等.
(1)請(qǐng)你用“如果…,那么…”的形式敘述上述命題;
(2)將△ABC和△A'B'C'拼在一起,請(qǐng)你畫出兩種拼接圖形;例如圖2:(即使點(diǎn)A與點(diǎn)A'重合,點(diǎn)C與點(diǎn)C'重合.)
(3)請(qǐng)你選擇你拼成的其中一種圖形,證明該命題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=8,BC=6,D是AB的中點(diǎn),點(diǎn)E在邊AC上,將△ADE沿DE翻折,使得點(diǎn)A落在點(diǎn)A'處,當(dāng)A'E⊥AC時(shí),A'B= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“五一”小長(zhǎng)假,小穎和小梅兩家計(jì)劃從“北京天安門”“三亞南山”“內(nèi)蒙古大草原”三個(gè)景區(qū)中任意選擇一景區(qū)游玩,小穎和小梅制作了如下三張質(zhì)地大小完全相同的卡片,背面朝上洗勻后各自從中抽去一張來(lái)確定游玩景區(qū)(第一人抽完放回洗勻后另一人再抽去),則兩人抽到同一景區(qū)的概率是( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com