【題目】如圖,點D在⊙O的直徑AB的延長線上,點C在⊙O上,AC=CD,∠ACD=120°.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為4,求圖中陰影部分的面積.
【答案】
(1)解:連接OC,
∵AC=CD,∠ACD=120°,
∴∠A=∠D=30°,
∵OA=OC,
∴∠ACO=∠A=30°,
∴∠COD=60°
∴∠OCD=180°﹣∠COD﹣∠D=90°
∴OC⊥CD
∴CD是⊙O的切線;
(2)解:由(1)可知:∠COD=60°,
∴S扇形BOC= =
在Rt△OCD中,
tan60°=
∴CD=4 ,
∴S△OCD= OC×CD=8 ,
∴陰影部分面積為:8 ﹣
【解析】(1)連接OC,易證∠A=∠D=30°,由于OA=OC,所以∠ACO=∠A=30°,從而可知∠OCD=90°,即OC⊥CD.(2)分別求出扇形BOC與直角三角形OCD的面積即可求出陰影部分面積.
【考點精析】本題主要考查了扇形面積計算公式的相關知識點,需要掌握在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2)才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料,然后解答后面的問題。
我們知道方程有無數(shù)組解,但在實際生活中我們往往只需要求出其正整數(shù)解。例:由,得,( 、為正整數(shù))
則有.又為正整數(shù),則為整數(shù).
由2與3互質(zhì),可知: 為3的倍數(shù),從而,代入.
的正整數(shù)解為
問題:(1)若為自然數(shù),則滿足條件的值有_____________個
(2)請你寫出方程的所有正整數(shù)解:_________________________
(3)若,請用含的式子表示,并求出它的所有整數(shù)解。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算題
(1)﹣6﹣8+5﹣(﹣2);
(2)(﹣49)﹣(+91)﹣(﹣5)+(﹣9);
(3);
(4)()×(﹣24);
(5)(﹣3.59)×()﹣2.41×()+6×();
(6)﹣23+|2﹣3|﹣2×(﹣1)2014.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩臺機器加工相同的零件,甲機器加工160個零件所用的時間與乙機器加工120個零件所用的時間相等.已知甲、乙兩臺機器每小時共加工35個零件,求甲、乙兩臺機器每小時各加工多少個零件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,相距5km的A、B兩地間有一條筆直的馬路,C地位于AB兩地之間且距A地2km,小明同學騎自行車從A地出發(fā)沿馬路以每小時5km的速度向B地勻速運動,當?shù)竭_B地后立即以原來的速度返回。到達A地停止運動,設運動時間為t(小時).小明的位置為點P、若以點C為坐標原點,以從A到B為正方向,用1個單位長度表示1km,解答下列各問:
(1)指出點A所表示的有理數(shù);
(2)求t =0.5時,點P表示的有理數(shù);
(3)當小明距離C地1km時,直接寫出所有滿足條件的t值;
(4)在整個運動過程中,求點P與點A的距離(用含t的代數(shù)式表示);
(5)用含t的代數(shù)式表示點P表示的有理數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正六邊形ABCDEF的邊長為6cm,P是對角線BE上一動點,過點P作直線l與BE垂直,動點P從B點出發(fā)且以1cm/s的速度勻速平移至E點.設直線l掃過正六邊形ABCDEF區(qū)域的面積為S(cm2),點P的運動時間為t(s),下列能反映S與t之間函數(shù)關系的大致圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】由大小相同(棱長為1分米)的小立方塊搭成的幾何體如下圖.
(1)請在右圖的方格中畫出該幾何體的俯視圖和左視圖;
(2)圖中有 塊小正方體,它的表面積(含下底面)為 ;
(3)用小立方體搭一幾何體,使得它的俯視圖和左視圖與你在上圖方格中所畫的圖一致,則這樣的幾何體最少要_______個小立方塊,最多要_______個小立方塊.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在長方形ABCD中,AB=12cm,BC=8cm,點P從A點出發(fā),沿A→B→C→D路線運動,到D點停止;點Q從D點出發(fā),沿D→C→B→A運動,到A點停止.若點P、點Q同時出發(fā),點P的速度為每秒1cm,點Q的速度為每秒2cm,用x(秒)表示運動時間.
(1)求點P和點Q相遇時的x值.
(2)連接PQ,當PQ平分矩形ABCD的面積時,求運動時間x值.
(3)若點P、點Q運動到6秒時同時改變速度,點P的速度變?yōu)槊棵?/span>3cm,點Q的速度為每秒1cm,求在整個運動過程中,點P、點Q在運動路線上相距路程為20cm時運動時間x值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)你的經(jīng)驗,分別求下列事件的概率:
(1)在一個不透明的袋中裝有紅球3個,白球2個,黑球1個,每種球除顏色外其余都相同,搖勻后隨機地從袋中取出1個球,取到紅球的概率.
(2)投擲一枚普通正方體骰子,出現(xiàn)的點數(shù)為7的概率.
(3)投擲兩枚普通硬幣,出現(xiàn)兩個正面的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com