已知二次函數(shù)與x軸交于A(1,0)、B(3,0)兩點(diǎn);二次函數(shù)的頂點(diǎn)為P.
(1)請(qǐng)直接寫(xiě)出:b=_______,c=___________;
(2)當(dāng)∠APB=90°,求實(shí)數(shù)k的值;
(3)若直線與拋物線L2交于E,F(xiàn)兩點(diǎn),問(wèn)線段EF的長(zhǎng)度是否發(fā)生變化?如果不發(fā)生變化,請(qǐng)求出EF的長(zhǎng)度;如果發(fā)生變化,請(qǐng)說(shuō)明理由.

(1)8,;(2);(3)線段EF的長(zhǎng)度不變化,8.

解析試題分析:(1)將A(1,0)、B(3,0)代入.
(2)確定二拋物線的對(duì)稱(chēng)軸重合,從而得到△APB為等腰直角三角形,且點(diǎn)P為直角頂點(diǎn),一方面根據(jù)等腰直角三角形求得到,另一方面根據(jù)點(diǎn)P為的頂點(diǎn)得到,二者聯(lián)立求解即可.
(3)聯(lián)立直線和拋物線的解析式,求出E、F兩點(diǎn)的坐標(biāo),然后判斷EF是否為定值.
(1)8, .
(2)∵在二次函數(shù)中,對(duì)稱(chēng)軸為;在二次函數(shù)中,對(duì)稱(chēng)軸為,
∴點(diǎn)P也在的對(duì)稱(chēng)軸上.
∴AP=BP.
∵∠APB=90°
∴△APB為等腰直角三角形,且點(diǎn)P為直角頂點(diǎn).
,解得.
∵點(diǎn)P為的頂點(diǎn),
.
,解得.
(3)判斷:線段EF的長(zhǎng)度不變化.
由題意得
解得 ,
∴EF=.
∴線段EF的長(zhǎng)度不變化.
考點(diǎn):二次函數(shù)綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線經(jīng)過(guò)點(diǎn)A(3,2),B(0,1)和點(diǎn)C
(1)求拋物線的解析式;
(2)如圖,若拋物線的頂點(diǎn)為P,點(diǎn)A關(guān)于對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)為M,過(guò)M的直線交拋物線于另一點(diǎn)N(N在對(duì)稱(chēng)軸右邊),交對(duì)稱(chēng)軸于F,若,求點(diǎn)F的坐標(biāo);
(3)在(2)的條件下,在y軸上是否存在點(diǎn)G,使△BMA與△MBG相似?若存在,求點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知一個(gè)二次函數(shù)的關(guān)系式為 y=x2-2bx+c.
(1)若該二次函數(shù)的圖象與x軸只有一個(gè)交點(diǎn),
①則b、c 應(yīng)滿足關(guān)系為                
②若該二次函數(shù)的圖象經(jīng)過(guò)A(m,n)、B(m +6,n)兩點(diǎn),求n的值;
(2)若該二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn)C(6,0)、D(k,0),線段CD(含端點(diǎn))上有若干個(gè)橫坐標(biāo)為整數(shù)的點(diǎn),且這些點(diǎn)的橫坐標(biāo)之和為21,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,如圖二次函數(shù)y=ax2+bx+c(a≠0)的圖象與y軸交于點(diǎn)C(0,4)與x軸交于點(diǎn)A、B,點(diǎn)B(4,0),拋物線的對(duì)稱(chēng)軸為x=1.直線AD交拋物線于點(diǎn)D(2,m),
(1)求二次函數(shù)的解析式并寫(xiě)出D點(diǎn)坐標(biāo);
(2)點(diǎn)Q是線段AB上的一動(dòng)點(diǎn),過(guò)點(diǎn)Q作QE∥AD交BD于E,連結(jié)DQ,當(dāng)△DQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);
(3)拋物線與y軸交于點(diǎn)C,直線AD與y軸交于點(diǎn)F,點(diǎn)M為拋物線對(duì)稱(chēng)軸上的動(dòng)點(diǎn),點(diǎn)N在x軸上,當(dāng)四邊形CMNF周長(zhǎng)取最小值時(shí),求出滿足條件的點(diǎn)M和點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知OA=2,OC=4,⊙M與軸相切于點(diǎn)C,與軸交于A,B兩點(diǎn),∠ACD=90°,拋物線經(jīng)過(guò)A,B,C三點(diǎn).
(1)求證:∠CAO=∠CAD;
(2)求弦BD的長(zhǎng);
(3)在拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)P使ΔPBC是以BC為腰的等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在直角坐標(biāo)系xOy中,正方形OCBA的頂點(diǎn)A,C分別在y軸,x軸上,點(diǎn)B坐標(biāo)為(6,6),拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A,B兩點(diǎn),且3a-b=-1.
(1)求a,b,c的值;
(2)如果動(dòng)點(diǎn)E,F(xiàn)同時(shí)分別從點(diǎn)A,點(diǎn)B出發(fā),分別沿A→B,B→C運(yùn)動(dòng),速度都是每秒1個(gè)單位長(zhǎng)度,當(dāng)點(diǎn)E到達(dá)終點(diǎn)B時(shí),點(diǎn)E,F(xiàn)隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,△EBF的面積為S.
①試求出S與t之間的函數(shù)關(guān)系式,并求出S的最大值;
②當(dāng)S取得最大值時(shí),在拋物線上是否存在點(diǎn)R,使得以E,B,R,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出點(diǎn)R的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系xOy中,已知二次函數(shù)的圖像經(jīng)過(guò)原點(diǎn)及點(diǎn)A(1,2),與x軸相交于另一點(diǎn)B(3,0),將點(diǎn)B向右平移3個(gè)單位得點(diǎn)C.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)M在線段OC上,平面內(nèi)有一點(diǎn)Q,使得四邊形ABMQ為菱形,求點(diǎn)M坐標(biāo);
(3)點(diǎn)P在線段OC上,從O點(diǎn)出發(fā)向C點(diǎn)運(yùn)動(dòng),過(guò)P點(diǎn)作x軸的垂線,交直線AO于D點(diǎn),以PD為邊在PD的右側(cè)作正方形PDEF(當(dāng)P點(diǎn)運(yùn)動(dòng)時(shí),點(diǎn)D、點(diǎn)E、點(diǎn)F也隨之運(yùn)動(dòng));
①當(dāng)點(diǎn)E在二次函數(shù)的圖像上時(shí),求OP的長(zhǎng);
②若點(diǎn)P從O點(diǎn)出發(fā)向C點(diǎn)做勻速運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,若P點(diǎn)運(yùn)動(dòng)t秒時(shí),直線AC與以DE為直徑的⊙M相切,直接寫(xiě)出此刻t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,排球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2 m的A處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿足關(guān)系式y(tǒng)=a(x-6)2+h.已知球網(wǎng)與O點(diǎn)的水平距離為9 m,高度為2.43 m,球場(chǎng)的邊界距O點(diǎn)的水平距離為18 m.

(1)當(dāng)h=2.6時(shí),求y與x的關(guān)系式(不要求寫(xiě)出自變量x的取值范圍)
(2)當(dāng)h=2.6時(shí),球能否越過(guò)球網(wǎng)?球會(huì)不會(huì)出界?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

我區(qū)某房地產(chǎn)開(kāi)發(fā)公司于2013年5月份完工一商品房小區(qū),6月初開(kāi)始銷(xiāo)售,其中6月的銷(xiāo)售單價(jià)為0.7萬(wàn)元/m2,7月的銷(xiāo)售單價(jià)為0.72萬(wàn)元/m2,且每月銷(xiāo)售價(jià)格(單位:)與月份x(6≤x≤11,x為整數(shù))之間滿足一次函數(shù)關(guān)系,每月的銷(xiāo)售面積為(單位:),其中y2=-2000x+26000(6≤x≤11,x為整數(shù)).
(1)求與月份的函數(shù)關(guān)系式;
(2)6~11月中,哪一個(gè)月的銷(xiāo)售額最高?最高銷(xiāo)售額為多少萬(wàn)元?
(3)2013年11月時(shí),因受某些因素影響,該公司銷(xiāo)售部預(yù)計(jì)12月份的銷(xiāo)售面積會(huì)在11月銷(xiāo)售面積基礎(chǔ)上減少,于是決定將12月份的銷(xiāo)售價(jià)格在11月的基礎(chǔ)上增加,該計(jì)劃順利完成.為了盡快收回資金,2014年1月公司進(jìn)行降價(jià)促銷(xiāo),該月銷(xiāo)售額為(1500+600a)萬(wàn)元.這樣12月、1月的銷(xiāo)售額共為萬(wàn)元,請(qǐng)根據(jù)以上條件求出的值為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案